Scaling properties in forest fire sequences: The human role in the order of nature
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2007.02.028
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Albano, Ezequiel V., 1995. "Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 216(3), pages 213-226.
- Drossel, B. & Schwabl, F., 1992. "Self-organized criticality in a forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 47-50.
- Amatulli, Giuseppe & Peréz-Cabello, Fernando & de la Riva, Juan, 2007. "Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty," Ecological Modelling, Elsevier, vol. 200(3), pages 321-333.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng, Dan & Han, Xiao-Pu & Wei, Zong-Wen & Wang, Bing-Hong, 2015. "Punctuated equilibrium dynamics in human communications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 36-44.
- Telesca, Luciano & Song, Weiguo, 2011. "Time-scaling properties of city fires," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 558-568.
- Ilaria Zambon & Artemi Cerdà & Pavel Cudlin & Pere Serra & Silvia Pili & Luca Salvati, 2019. "Road Network and the Spatial Distribution of Wildfires in the Valencian Community (1993–2015)," Agriculture, MDPI, vol. 9(5), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Jianyi & Rinaldi, Sergio, 2009. "A derivation of the statistical characteristics of forest fires," Ecological Modelling, Elsevier, vol. 220(7), pages 898-903.
- de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
- Satulovsky, Javier E., 1997. "On the synchronizing mechanism of a class of cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 237(1), pages 52-58.
- Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
- James Gaboardi, 2020. "Validating Abstract Representations of Spatial Population Data while considering Disclosure Avoidance," Working Papers 20-5, Center for Economic Studies, U.S. Census Bureau.
- Bill McKelvey & Benyamin B. Lichtenstein & Pierpaolo Andriani, 2012. "When organisations and ecosystems interact: toward a law of requisite fractality in firms," International Journal of Complexity in Leadership and Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 104-136.
- Batac, Rene & Longjas, Anthony & Monterola, Christopher, 2012. "Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 616-624.
- Marzouk, Cyril, 2016. "Fires on large recursive trees," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 265-289.
- LaViolette, Randall A. & Glass, Kristin & Colbaugh, Richard, 2009. "Deep information from limited observation of robust yet fragile systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3283-3287.
- Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
- José Ramón González‐Olabarria & Blas Mola‐Yudego & Lluis Coll, 2015. "Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain)," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1197-1209, July.
- Honecker, A. & Peschel, I., 1997. "Length scales and power laws in the two-dimensional forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 239(4), pages 509-530.
- Tang, Da-Hai & Han, Xiao-Pu & Wang, Bing-Hong, 2010. "Stretched exponential distribution of recurrent time of wars in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2637-2641.
- Gran, Joseph D. & Rundle, John B. & Turcotte, Donald L. & Holliday, James R. & Klein, William, 2011. "A damage model based on failure threshold weakening," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1269-1278.
- James Gaboardi, 2020. "Validating Abstract Representations of Spatial Population Data while considering Disclosure Avoidance," Working Papers 20-05, Center for Economic Studies, U.S. Census Bureau.
- Vittorio Zanon & Fátima Viveiros & Catarina Silva & Ana Hipólito & Teresa Ferreira, 2008. "Impact of lightning on organic matter-rich soils: influence of soil grain size and organic matter content on underground fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 19-31, April.
- Bonabeau, Eric, 1994. "Self-reorganizations in a simple model of the immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(3), pages 336-350.
- Jaime de Diego & Antonio Rúa & Mercedes Fernández, 2021. "Vulnerability Variables and Their Effect on Wildfires in Galicia (Spain). A Panel Data Analysis," Land, MDPI, vol. 10(10), pages 1-17, September.
- Nikos Koutsias & Panagiotis Balatsos & Kostas Kalabokidis, 2014. "Fire occurrence zones: kernel density estimation of historical wildfire ignitions at the national level, Greece," Journal of Maps, Taylor & Francis Journals, vol. 10(4), pages 630-639, October.
- Drossel, B. & Schwabl, F., 1993. "Forest-fire model with immune trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 199(2), pages 183-197.
More about this item
Keywords
Self-organized criticality; Wildfires; Human; Frequency–area distribution; Inter-event Interval;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:205:y:2007:i:3:p:336-342. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.