IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i15d10.1007_s11069-024-06738-3.html
   My bibliography  Save this article

An assessment of existing wildfire danger indices in comparison to one-class machine learning models

Author

Listed:
  • Fathima Nuzla Ismail

    (University of Otago)

  • Brendon J. Woodford

    (University of Otago)

  • Sherlock A. Licorish

    (University of Otago)

  • Aubrey D. Miller

    (University of Otago)

Abstract

Predicting wildfires using Machine Learning models is relevant and essential to minimize wildfire threats to protect human lives and reduce significant property damage. Reliance on traditional wildfire indices for forecasting wildfires has failed to provide the expected prediction outcomes, resulting in limited application of these models. Thus, this research compares the outcome of wildfire forecasting using fire danger rating indices against Machine Learning model outcomes. Furthermore, the performance effectiveness of the fire danger rating indices and Machine Learning model outcomes are assessed using the same wildfire incidents. The One-class Machine Learning algorithms used are Support Vector Machine, Isolation Forest, Neural network-based Autoencoder and Variational Autoencoder models. The two global wildfire indices investigated were the US National Fire Danger Rating System for California and the McArthur Forest Fire Danger Index for Western Australia, using similar features. For the same data sets, the National Fire Danger Rating System and the McArthur Forest Fire Danger Index prediction outcomes were compared with Machine Learning model outcomes. Higher wildfire prediction accuracy was achieved by the One-class models, exceeding the performance of the two wildfire danger indices by at least 20%. The implications of our research findings have the potential to influence both these wildfire indices and state-of-the-art methods in wildfire prediction by proposing alternative ML methods to model the onset of wildfires.

Suggested Citation

  • Fathima Nuzla Ismail & Brendon J. Woodford & Sherlock A. Licorish & Aubrey D. Miller, 2024. "An assessment of existing wildfire danger indices in comparison to one-class machine learning models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14837-14868, December.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06738-3
    DOI: 10.1007/s11069-024-06738-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06738-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06738-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Jianhua Z., 1998. "Functional ANOVA Models for Generalized Regression," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 49-71, October.
    2. Polash Banerjee, 2022. "MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 899-935, January.
    3. Hamid Reza Pourghasemi & Soheila Pouyan & Mojgan Bordbar & Foroogh Golkar & John J. Clague, 2023. "Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3797-3816, April.
    4. Hamid Reza Pourghasemi & Soheila Pouyan & Mojgan Bordbar & Foroogh Golkar & John J. Clague, 2023. "Correction to: Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 871-874, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanfan Huang & Dan Zhu & Yichen Zhang & Jiquan Zhang & Ning Wang & Zhennan Dong, 2024. "Urban Flooding Disaster Risk Assessment Utilizing the MaxEnt Model and Game Theory: A Case Study of Changchun, China," Sustainability, MDPI, vol. 16(19), pages 1-23, October.
    2. Katharina Hecht & Abraham Ortega Reboso & Michelle van der Vegt & Jaco Appelman & Maibritt Pedersen Zari, 2024. "Ecologically Regenerative Building Systems through Exergy Efficiency: Designing for Structural Order and Ecosystem Services," Land, MDPI, vol. 13(9), pages 1-18, August.
    3. Lan Xue & Hua Liang, 2010. "Polynomial Spline Estimation for a Generalized Additive Coefficient Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 26-46, March.
    4. Alexander Caicedo & Carolina Varon & Sabine Van Huffel & Johan A K Suykens, 2019. "Functional form estimation using oblique projection matrices for LS-SVM regression models," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    5. Miao Yang & Lan Xue & Lijian Yang, 2016. "Variable selection for additive model via cumulative ratios of empirical strengths total," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 595-616, September.
    6. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.
    7. Huang, Jianhua Z., 2003. "Asymptotics for polynomial spline regression under weak conditions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 207-216, November.
    8. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    9. Cui, Xia & Zhao, Weihua & Lian, Heng & Liang, Hua, 2019. "Pursuit of dynamic structure in quantile additive models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 42-60.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06738-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.