IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3605-d1072339.html
   My bibliography  Save this article

Joint Risk Analysis of Extreme Rainfall and High Tide Level Based on Extreme Value Theory in Coastal Area

Author

Listed:
  • Hao Chen

    (College of Water Sciences, Beijing Normal University, Beijing 100875, China
    Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China)

  • Zongxue Xu

    (College of Water Sciences, Beijing Normal University, Beijing 100875, China
    Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China)

  • Ji Chen

    (Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China)

  • Yang Liu

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100875, China)

  • Peng Li

    (College of Water Sciences, Beijing Normal University, Beijing 100875, China
    Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China)

Abstract

Extreme rainfall and high tide levels are the main causal factors of urban flood disasters in coastal areas. As complex interactions between these factors can exacerbate the impact of urban flood disasters in coastal areas, an associated flood risk assessment involves not only the estimation of the extreme values of each variable but also their probability of occurring simultaneously. With a consideration of the Shenzhen River Basin (China), this study used bivariate copula functions to quantitatively evaluate the joint risk of extreme rainfall and a high tide level. The results showed that a significant positive correlation exists between extreme rainfall and the corresponding high tide level, and that if the positive dependency was ignored, the probability of simultaneous extreme events would be underestimated. If a dangerous event is defined as one in which heavy rainfall and high tide level events occur concurrently, the “AND” joint return period based on the annual maxima method should be adopted. If a dangerous event is defined as one in which either only a heavy rainfall or a high tide level event occurs, the “OR” joint return period should be adopted. The results represent a theoretical basis and decision-making support for flood risk management and flood prevention/reduction in coastal areas.

Suggested Citation

  • Hao Chen & Zongxue Xu & Ji Chen & Yang Liu & Peng Li, 2023. "Joint Risk Analysis of Extreme Rainfall and High Tide Level Based on Extreme Value Theory in Coastal Area," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3605-:d:1072339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    2. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    3. Hongshi Xu & Kui Xu & Lingling Bin & Jijian Lian & Chao Ma, 2018. "Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China," IJERPH, MDPI, vol. 15(7), pages 1-20, June.
    4. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    5. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    6. Kui Xu & Chao Ma & Jijian Lian & Lingling Bin, 2014. "Joint Probability Analysis of Extreme Precipitation and Storm Tide in a Coastal City under Changing Environment," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    2. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
    3. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    4. Mohammad Karamouz & Helia Farzaneh & Mehri Dolatshahi, 2020. "Margin of Safety Based Flood Reliability Evaluation of Wastewater Treatment Plants: Part 1 – Basic Concepts and Statistical Settings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 579-594, January.
    5. Chao Ma & Wenchao Qi & Hongshi Xu & Kai Zhao, 2022. "An integrated quantitative framework to assess the impacts of disaster-inducing factors on causing urban flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1903-1924, September.
    6. Shahid Latif & Slobodan P. Simonovic, 2022. "Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5599-5632, November.
    7. Jijian Lian & Hongshi Xu & Kui Xu & Chao Ma, 2017. "Optimal management of the flooding risk caused by the joint occurrence of extreme rainfall and high tide level in a coastal city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 183-200, October.
    8. Bevacqua, Emanuele & Maraun, Douglas & Vousdoukas, Michalis I. & Voukouvalas, Evangelos & Vrac, Mathieu & Mentaschi, Lorenzo & Widmann, Martin, 2018. "Higher potential compound flood risk in Northern Europe under anthropogenic climate change," Earth Arxiv ta764, Center for Open Science.
    9. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    10. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," Working Papers hal-03389325, HAL.
    11. Richard C. Bradley & Richard A. Davis & Dimitris N. Politis, 2021. "Preface to the Murray Rosenblatt memorial special issue of JTSA," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 495-498, September.
    12. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    13. Gaißer, Sandra & Schmid, Friedrich, 2010. "On testing equality of pairwise rank correlations in a multivariate random vector," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2598-2615, November.
    14. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    15. Okhrin, Ostap & Ristig, Alexander, 2012. "Hierarchical Archimedean copulae: The HAC package," SFB 649 Discussion Papers 2012-036, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    17. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    18. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    19. Luca Riccetti, 2013. "A copula–GARCH model for macro asset allocation of a portfolio with commodities," Empirical Economics, Springer, vol. 44(3), pages 1315-1336, June.
    20. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3605-:d:1072339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.