IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v91y2018i2d10.1007_s11069-017-3135-5.html
   My bibliography  Save this article

Sources of uncertainty in a probabilistic flood risk model

Author

Listed:
  • B. Winter

    (University of Innsbruck
    alpS - Centre for Climate Change Adaptation)

  • K. Schneeberger

    (alpS - Centre for Climate Change Adaptation)

  • M. Huttenlau

    (alpS - Centre for Climate Change Adaptation)

  • J. Stötter

    (University of Innsbruck)

Abstract

Flood risk models capture a variety of processes and are associated with large uncertainties. In this paper, the uncertainties due to alternative model assumptions are analysed for various components of a probabilistic flood risk model in the study area of Vorarlberg (Austria). The effect of different model assumptions for five aspects is compared to a reference simulation. This includes: (I, II) the selection of two model thresholds controlling the generation of large sets of possible flood events; (III) the selection of a distribution function for the flood frequency analysis; (IV) the building representation and water level derivation for the exposure analysis and (V) the selection of an appropriate damage function. The analysis shows that each of the tested aspects has the potential to alter the modelling results considerably. The results range from a factor of 1.2 to 3, from the lowest to highest value, whereby the selection of the damage function has the largest effect on the overall modelling results.

Suggested Citation

  • B. Winter & K. Schneeberger & M. Huttenlau & J. Stötter, 2018. "Sources of uncertainty in a probabilistic flood risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 431-446, March.
  • Handle: RePEc:spr:nathaz:v:91:y:2018:i:2:d:10.1007_s11069-017-3135-5
    DOI: 10.1007/s11069-017-3135-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3135-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3135-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno Merz & Annegret Thieken, 2009. "Flood risk curves and uncertainty bounds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(3), pages 437-458, December.
    2. Caroline Keef & Jonathan A. Tawn & Rob Lamb, 2013. "Estimating the probability of widespread flood events," Environmetrics, John Wiley & Sons, Ltd., vol. 24(1), pages 13-21, February.
    3. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    4. Ralf Merz & Günter Blöschl & Günter Humer, 2008. "National flood discharge mapping in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 53-72, July.
    5. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beom-Jin Kim & Minkyu Kim & Daegi Hahm & Junhee Park & Kun-Yeun Han, 2021. "Probabilistic Flood Assessment Methodology for Nuclear Power Plants Considering Extreme Rainfall," Energies, MDPI, vol. 14(9), pages 1-27, May.
    2. Juan Pinos & Daniel Orellana & Luis Timbe, 2020. "Assessment of microscale economic flood losses in urban and agricultural areas: case study of the Santa Bárbara River, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2323-2337, September.
    3. Hadush Meresa & Yongqiang Zhang, 2021. "Contrasting Uncertainties in Estimating Floods and Low Flow Extremes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1775-1795, April.
    4. Kui Xu & Chenyue Wang & Lingling Bin, 2023. "Compound flood models in coastal areas: a review of methods and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 469-496, March.
    5. Lindsay Beevers & Lila Collet & Gordon Aitken & Claire Maravat & Annie Visser, 2020. "The influence of climate model uncertainty on fluvial flood hazard estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2489-2510, December.
    6. Tugkan Tanir & Andre de Souza de Lima & Gustavo A. Coelho & Sukru Uzun & Felicio Cassalho & Celso M. Ferreira, 2021. "Assessing the spatiotemporal socioeconomic flood vulnerability of agricultural communities in the Potomac River Watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 225-251, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Schneeberger & Matthias Huttenlau & Benjamin Winter & Thomas Steinberger & Stefan Achleitner & Johann Stötter, 2019. "A Probabilistic Framework for Risk Analysis of Widespread Flood Events: A Proof‐of‐Concept Study," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 125-139, January.
    2. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    3. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    4. Unterberger, Christian & Hudson, Paul & Botzen, W.J. Wouter & Schroeer, Katharina & Steininger, Karl W., 2019. "Future Public Sector Flood Risk and Risk Sharing Arrangements: An Assessment for Austria," Ecological Economics, Elsevier, vol. 156(C), pages 153-163.
    5. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    6. Francesco Serinaldi & Chris G. Kilsby, 2017. "A Blueprint for Full Collective Flood Risk Estimation: Demonstration for European River Flooding," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1958-1976, October.
    7. J. Oliver & X. S. Qin & O. Larsen & M. Meadows & M. Fielding, 2018. "Probabilistic flood risk analysis considering morphological dynamics and dike failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 287-307, March.
    8. Mahkameh Zarekarizi & Vivek Srikrishnan & Klaus Keller, 2020. "Neglecting Uncertainties Biases House-Elevation Decisions to Manage Riverine Flood Risks," Papers 2001.06457, arXiv.org, revised Sep 2020.
    9. Heidi Kreibich & Anna Botto & Bruno Merz & Kai Schröter, 2017. "Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT‐FLEMO," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 774-787, April.
    10. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    11. Zongzhi Wang & Jingjing Wu & Liang Cheng & Kelin Liu & Yi-Ming Wei, 2018. "Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 803-822, September.
    12. S. Detrembleur & F. Stilmant & B. Dewals & S. Erpicum & P. Archambeau & M. Pirotton, 2015. "Impacts of climate change on future flood damage on the river Meuse, with a distributed uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1533-1549, July.
    13. Rob Lamb & Paige Garside & Raghav Pant & Jim W. Hall, 2019. "A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2457-2478, November.
    14. Jeroen C. J. H. Aerts & Ning Lin & Wouter Botzen & Kerry Emanuel & Hans de Moel, 2013. "Low‐Probability Flood Risk Modeling for New York City," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 772-788, May.
    15. Ayesha Rahman & Ataur Rahman & Mohammad Zaman & Khaled Haddad & Amimul Ahsan & Monzur Imteaz, 2013. "A study on selection of probability distributions for at-site flood frequency analysis in Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1803-1813, December.
    16. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    17. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    18. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    19. O. Ionuş & M. Licurici & M. Pătroescu & S. Boengiu, 2015. "Assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 69-88, February.
    20. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:91:y:2018:i:2:d:10.1007_s11069-017-3135-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.