IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i2d10.1007_s11069-021-04638-4.html
   My bibliography  Save this article

Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data

Author

Listed:
  • Cahio Guimarães Seabra Eiras

    (Federal University of Ouro Preto)

  • Juliana Ribeiro Gonçalves de Souza

    (Federal University of Ouro Preto)

  • Renata Delicio Andrade de Freitas

    (Federal University of Ouro Preto)

  • César Falcão Barella

    (Federal University of Ouro Preto)

  • Tiago Martins Pereira

    (Federal University of Ouro Preto)

Abstract

The city of Ouro Preto, which is located in the state of Minas Gerais, Brazil, has a long history of mass movements influenced by the regional geology, geomorphology, and anthropic activities, which have resulted in harmful consequences to the population. However, most of the studies conducted in the region are qualitative and are directly dependent on the experience specialists. The aim of this study was to analyse the landslide susceptibility in the urban region of Ouro Preto quantitatively by using discriminant analysis. The landslide inventory was obtained by using unmanned aerial vehicle images and fieldwork. ArcGIS 10.6 and R 3.5.1 software were used, and the following landslide predisposing factors were considered: slope angle, slope aspect, profile curvature, and topographic wetness index (TWI). As geological and geotechnical data are still scarce in the interior of Brazil, we only used data derived from topography to determine the effectiveness of these factors for analysing landslide susceptibility. The slope angle proved to be the factor that most differentiated unstable from stable terrain, followed by TWI. The other parameters were not as effective in differentiating the stability conditions. The model efficiency was 88.6%, the specificity was 93.3%, and the sensitivity was 85.0%. Also, the prediction and success curve were used to evaluate the accuracy of the proposed landslides model, by using the area under the curve (AUC) criteria. It was shown that the AUC values 0.851 for testing and 0.838 for training indicate that the developed model provides an excellent prediction. The main contribution of this work is the demonstration of the effectiveness of using easily accessible data (derived from topography) for analysing landslide susceptibility with a multivariate statistical method. This method can contribute valuable information to urban planning efforts in cities without the need for robust data.

Suggested Citation

  • Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04638-4
    DOI: 10.1007/s11069-021-04638-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04638-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04638-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prabin Kayastha & Megh Dhital & Florimond Smedt, 2012. "Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 479-498, September.
    2. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    3. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
    4. Danang Sri Hadmoko & Franck Lavigne & Guruh Samodra, 2017. "Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 437-468, May.
    5. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    6. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    7. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    8. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    9. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    10. Zhaohua Chen & Jinfei Wang, 2007. "Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 75-89, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.
    2. Michele Placido Antonio Gatto & Salvatore Misiano & Lorella Montrasio, 2022. "On the Use of MATLAB to Import and Manipulate Geographic Data: A Tool for Landslide Susceptibility Assessment," Geographies, MDPI, vol. 2(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.
    2. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    3. Silvana Moragues & María Gabriela Lenzano & Mario Lanfri & Stella Moreiras & Esteban Lannutti & Luis Lenzano, 2021. "Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 915-941, January.
    4. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    5. Quynh Duy Bui & Hang Ha & Dong Thanh Khuc & Dinh Quoc Nguyen & Jason von Meding & Lam Phuong Nguyen & Chinh Luu, 2023. "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2283-2309, March.
    6. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    7. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    8. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    9. Yongchao Li & Jianping Chen & Chun Tan & Yang Li & Feifan Gu & Yiwei Zhang & Qaiser Mehmood, 2021. "Application of the borderline-SMOTE method in susceptibility assessments of debris flows in Pinggu District, Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2499-2522, February.
    10. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    11. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    12. Sara Beheshtifar, 2023. "Identification of landslide-prone zones using a GIS-based multi-criteria decision analysis and region-growing algorithm in uncertain conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1475-1497, January.
    13. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    14. Antonio Ganga & Mario Elia & Ersilia D’Ambrosio & Simona Tripaldi & Gian Franco Capra & Francesco Gentile & Giovanni Sanesi, 2022. "Assessing Landslide Susceptibility by Coupling Spatial Data Analysis and Logistic Model," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    15. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    16. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    17. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    18. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    19. Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
    20. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:2:d:10.1007_s11069-021-04638-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.