IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i1d10.1007_s11069-021-05186-7.html
   My bibliography  Save this article

Analysis of human exposure to landslides with a GIS multiscale approach

Author

Listed:
  • S. Modugno

    (United Nation World Food Programme
    University of Leicester)

  • S. C. M. Johnson

    (University of Leicester
    University of Leicester)

  • P. Borrelli

    (University of Pavia
    Kangwon National University)

  • E. Alam

    (Rabdan Academy
    University of Chittagong)

  • N. Bezak

    (University of Ljubljana)

  • H. Balzter

    (University of Leicester
    University of Leicester)

Abstract

Decision-making plays a key role in reducing landslide risk and preventing natural disasters. Land management, recovery of degraded lands, urban planning, and environmental protection in general are fundamental for mitigating landslide hazard and risk. Here, we present a GIS-based multi-scale approach to highlight where and when a country is affected by a high probability of landslide occurrence. In the first step, a landslide human exposure equation is developed considering the landslide susceptibility triggered by rain as hazard, and the population density as exposed factor. The output, from this overview analysis, is a global GIS layer expressing the number of potentially affected people by month, where the monthly rain is used to weight the landslide hazard. As following step, Logistic Regression (LR) analysis was implemented at a national and local level. The Receiver Operating Characteristic indicator is used to understand the goodness of a LR model. The LR models are defined by a dependent variable, presence–absence of landslide points, versus a set of independent environmental variables. The results demonstrate the relevance of a multi-scale approach, at national level the biophysical variables are able to detect landslide hotspot areas, while at sub-regional level geomorphological aspects, like land cover, topographic wetness, and local climatic condition have greater explanatory power.

Suggested Citation

  • S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05186-7
    DOI: 10.1007/s11069-021-05186-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05186-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05186-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brander, L.M. & Tankha, S. & Sovann, C. & Sanadiradze, G. & Zazanashvili, N. & Kharazishvili, D. & Memiadze, N. & Osepashvili, I. & Beruchashvili, G. & Arobelidze, N., 2018. "Mapping the economic value of landslide regulation by forests," Ecosystem Services, Elsevier, vol. 32(PA), pages 101-109.
    2. Yang Hong & Robert Adler & George Huffman, 2007. "Use of satellite remote sensing data in the mapping of global landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 245-256, November.
    3. Dalia Kirschbaum & Robert Adler & Yang Hong & Stephanie Hill & Arthur Lerner-Lam, 2010. "A global landslide catalog for hazard applications: method, results, and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 561-575, March.
    4. Edris Alam, 2020. "Landslide Hazard Knowledge, Risk Perception and Preparedness in Southeast Bangladesh," Sustainability, MDPI, vol. 12(16), pages 1-12, August.
    5. Crespin, Silvio J. & Simonetti, Javier A., 2016. "Loss of ecosystem services and the decapitalization of nature in El Salvador," Ecosystem Services, Elsevier, vol. 17(C), pages 5-13.
    6. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshinori Shinohara & Yuta Watanabe, 2023. "Differences in factors determining landslide hazards among three types of landslides in Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1689-1705, September.
    2. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    3. Luminiţa L. Cojocariu & Loredana Copăcean & Adrian Ursu & Veronica Sărăţeanu & Cosmin A. Popescu & Marinel N. Horablaga & Despina-Maria Bordean & Adina Horablaga & Cristian Bostan, 2024. "Assessment of the Impact of Population Reduction on Grasslands with a New “Tool”: A Case Study on the “Mountainous Banat” Area of Romania," Land, MDPI, vol. 13(2), pages 1-30, January.
    4. Zhiye Wang & Chuanming Ma & Yang Qiu & Hanxiang Xiong & Minghong Li, 2022. "Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
    5. G. S. Pradeep & M. V. Ninu Krishnan & H. Vijith, 2023. "Characterising landslide susceptibility of an environmentally fragile region of the Western Ghats in Idukki district, Kerala, India, through statistical modelling and hotspot analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1623-1653, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    2. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    3. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
    4. Jeevan R. Kulkarni & Sneha S. Kulkarni & Mitali U. Inamdar & Nitin M. Tamhankar & Spandan B. Waghmare & Kiran R. Thombare & Paresh S. Mhetre & Tanuja Khatavkar & Yashodhan Panse & Amey Patwardhan & Yo, 2022. "“Satark”: Landslide Prediction System over Western Ghats of India," Land, MDPI, vol. 11(5), pages 1-23, May.
    5. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    6. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    7. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    8. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    9. Edris Alam & Fahim Sufi & Abu Reza Md. Towfiqul Islam, 2023. "A Scenario-Based Case Study: Using AI to Analyze Casualties from Landslides in Chittagong Metropolitan Area, Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    10. Stephen R. Sobie, 2020. "Future changes in precipitation-caused landslide frequency in British Columbia," Climatic Change, Springer, vol. 162(2), pages 465-484, September.
    11. Chelsea Dandridge & Thomas A. Stanley & Dalia B. Kirschbaum & Venkataraman Lakshmi, 2023. "Spatial and Temporal Analysis of Global Landslide Reporting Using a Decade of the Global Landslide Catalog," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    12. Weidong Wang & Jiaying Li & Xia Qu & Zheng Han & Pan Liu, 2019. "Prediction on landslide displacement using a new combination model: a case study of Qinglong landslide in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1121-1139, April.
    13. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    14. Hone-Jay Chu & Yi-Chin Chen, 2018. "Crowdsourcing photograph locations for debris flow hot spot mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1259-1276, February.
    15. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    16. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    17. Zonghu Liao & Yang Hong & Dalia Kirschbaum & Robert Adler & Jonathan Gourley & Rick Wooten, 2011. "Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 325-339, July.
    18. A. S. M. Maksud Kamal & Farhad Hossain & Bayes Ahmed & Md. Zillur Rahman & Peter Sammonds, 2023. "Assessing the effectiveness of landslide slope stability by analysing structural mitigation measures and community risk perception," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2393-2418, July.
    19. Zongxing Zou & Tao Luo & Qinwen Tan & Junbiao Yan & Yinfeng Luo & Xinli Hu, 2023. "Dynamic determination of landslide stability and thrust force considering slip zone evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 31-53, August.
    20. Andres Suarez & Paola Andrea Árias-Arévalo & Eliana Martínez-Mera, 2018. "Environmental sustainability in post-conflict countries: insights for rural Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 997-1015, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:1:d:10.1007_s11069-021-05186-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.