IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i2d10.1007_s11069-021-05128-3.html
   My bibliography  Save this article

Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas—implementation, validation, and comparative evaluation

Author

Listed:
  • Rajesh Kumar Dash

    (CSIR-Central Building Research Institute
    Academy of Scientific and Innovative Research (AcSIR))

  • Philips Omowumi Falae

    (CSIR-Central Building Research Institute
    Academy of Scientific and Innovative Research (AcSIR)
    Afe Babalola university)

  • Debi Prasanna Kanungo

    (CSIR-Central Building Research Institute
    Academy of Scientific and Innovative Research (AcSIR))

Abstract

Debris flows are natural disasters with devastating consequences and frequent recurrence in changing climatic regime of the Indian Himalayas. Therefore, it is necessary to delineate the debris flow susceptible areas in higher reaches of Himalayan terrain. With changing climate and unprecedented monsoon precipitation, debris flow susceptibility zonation may prove to be an effective way of disaster risk reduction. In the present study, debris flow susceptibility zonation has been attempted for a part of Chamoli district, Garhwal Himalayas, India. Three well-established statistical models involving frequency ratio, information value and certainty factor concepts have been implemented to integrate important influencing factors to generate the debris flow susceptibility zonation maps. Pre-2013 and post-2013 debris flow inventories have been used for model implementation cum success rate verification and prediction rate validation based on area under success rate curve and area under prediction rate curve concepts, respectively. It is inferred that both frequency ratio and certainty factor models have the fair classification quality for pre-2013 events and also have fair prediction capability for post-2013 events. Debris flow susceptibility maps generated using frequency ratio model and certainty factor model are found to be acceptable and appropriate as higher percentages of debris flows are found to occur in the very high susceptibility zone and a decreasing trend has been observed toward lower susceptibility zones. In contrary, the susceptibility map produced using information value model is found to be ambiguous as almost 99.81% areas of debris flows are observed in moderate and high susceptibility zones only. Comparative evaluation of debris flow susceptibility zonation maps is also attempted using density, error matrix, as well as difference image analysis. About 78.53% of the pixels are matching in both the frequency ratio as well as certainty factor-based debris flow susceptibility maps. On the other hand, information value-based susceptibility map has maximum mismatching of pixels with other two susceptibility maps. Such an attempt of debris flow susceptibility zonation mapping in Indian Himalayas considering both verification and validation data sets of debris flow events of two distinct periods is the novelty and uniqueness of the present study. Keeping in view the higher degree of risks involved in Himalayan debris flows due to their runout effects, such debris flow susceptibility zonation studies can be replicated in other parts of the Himalayan terrain.

Suggested Citation

  • Rajesh Kumar Dash & Philips Omowumi Falae & Debi Prasanna Kanungo, 2022. "Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas—implementation, validation, and comparative evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2011-2058, March.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05128-3
    DOI: 10.1007/s11069-021-05128-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05128-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05128-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    2. Jingbo Sun & Shengwu Qin & Shuangshuang Qiao & Yang Chen & Gang Su & Qiushi Cheng & Yanqing Zhang & Xu Guo, 2021. "Exploring the impact of introducing a physical model into statistical methods on the evaluation of regional scale debris flow susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 881-912, March.
    3. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    4. P. K. Champati Ray & Shovan Lal Chattoraj & M. P. S. Bisht & Suresh Kannaujiya & Kamal Pandey & Ajanta Goswami, 2016. "Kedarnath disaster 2013: causes and consequences using remote sensing inputs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 227-243, March.
    5. D. Kanungo & S. Sarkar & Shaifaly Sharma, 2011. "Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1491-1512, December.
    6. P. Champati Ray & Shovan Chattoraj & M. Bisht & Suresh Kannaujiya & Kamal Pandey & Ajanta Goswami, 2016. "Kedarnath disaster 2013: causes and consequences using remote sensing inputs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 227-243, March.
    7. Anik Saha & Sunil Saha, 2021. "Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4453-4483, March.
    8. Guru Balamurugan & Veerappan Ramesh & Mangminlen Touthang, 2016. "Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 465-488, October.
    9. Wenbo Xu & Wenjuan Yu & Shaocai Jing & Guoping Zhang & Jianxi Huang, 2013. "Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1379-1392, February.
    10. D. Shukla & C. Dubey & A. Ningreichon & R. Singh & B. Mishra & S. Singh, 2014. "GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1433-1452, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    2. Kun Li & Junsan Zhao & Yilin Lin, 2023. "Debris-flow susceptibility assessment in Dongchuan using stacking ensemble learning including multiple heterogeneous learners with RFE for factor optimization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2477-2511, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suvam Das & Shantanu Sarkar & Debi Prasanna Kanungo, 2023. "A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 23-72, January.
    2. Ashim Sattar & Ajanta Goswami & Anil V. Kulkarni, 2019. "Application of 1D and 2D hydrodynamic modeling to study glacial lake outburst flood (GLOF) and its impact on a hydropower station in Central Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 535-553, June.
    3. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    4. Baoling Yin & Jing Zeng & Yulun Zhang & Baojuan Huai & Yetang Wang, 2019. "Recent Kyagar glacier lake outburst flood frequency in Chinese Karakoram unprecedented over the last two centuries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 877-881, February.
    5. Zhuo Chen & Fei Ye & Wenxi Fu & Yutian Ke & Haoyuan Hong, 2020. "The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 853-877, April.
    6. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    7. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    8. Sandeep Kumar & Vikram Gupta, 2021. "Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2461-2488, December.
    9. Hailang He & Weiwei Wang & Zhengxing Wang & Shu Li & Jianguo Chen, 2024. "Enhancing Seismic Landslide Susceptibility Analysis for Sustainable Disaster Risk Management through Machine Learning," Sustainability, MDPI, vol. 16(9), pages 1-24, May.
    10. Tongde Chen & Juying Jiao & Lingling Wang & Wei Wei & Chunjing Zhao & Shuwei Wei, 2024. "Evaluation and Promotion of Alluvial Fan Land Suitability for Agriculture in the Lhasa River Basin, Qinghai–Tibet Plateau," Agriculture, MDPI, vol. 14(8), pages 1-22, July.
    11. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    12. Jie Dou & Hiromitsu Yamagishi & Hamid Pourghasemi & Ali Yunus & Xuan Song & Yueren Xu & Zhongfan Zhu, 2015. "An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1749-1776, September.
    13. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    14. Somnath Bera & Vaibhav Kumar Upadhyay & Balamurugan Guru & Thomas Oommen, 2021. "Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1257-1289, August.
    15. Idris Bello Yamusa & Mohd Suhaili Ismail & Abdulwaheed Tella, 2022. "Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    16. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    17. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    18. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    19. Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Farbod Farhangi & Soo-Mi Choi, 2021. "COVID-19 Risk Mapping with Considering Socio-Economic Criteria Using Machine Learning Algorithms," IJERPH, MDPI, vol. 18(18), pages 1-21, September.
    20. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:2:d:10.1007_s11069-021-05128-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.