IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i3d10.1007_s11069-022-05477-7.html
   My bibliography  Save this article

Stormwater runoff reduction simulation model for urban flood restoration in coastal area

Author

Listed:
  • Kihwan Song

    (Korea University)

  • Min Kim

    (Korea University)

  • Han-Min Kang

    (Korea Institute of Green Infrastructure Co., Ltd.)

  • Eun-Kyung Ham

    (Korea Institute of Green Infrastructure Co., Ltd.)

  • Junsung Noh

    (Sejong University)

  • Jong Seong Khim

    (Seoul National University)

  • Jinhyung Chon

    (Korea University)

Abstract

Urban floods caused by expanding impervious areas due to urban development and short-term heavy precipitation adversely affect many coastal cities. Notably, Seoul, one of the coastal cities that experiences acute urban floods, suffers annually from urban floods during the rainfall season. Consequently, to mitigate the impacts of urban floods in Seoul, we established flood-vulnerable areas as target areas where green infrastructure planning was applied using the Stormwater Runoff Reduction Module (SRRM). We selected the Gangdong, Gangbuk, and Dobong districts in Seoul, Korea, all of which demonstrate high flood vulnerability. Analyses in reducing the runoff amount and peak time delay effect were estimated by model simulation using the SRRM. The reduction in peak discharge for the whole area occurred in the following order: Gangdong district, then Gangbuk district, and lastly Dobong district. In contrast, the reduction in peak discharge per unit area was most prominent in Gangbuk district, followed by Dobong and Gangdong districts. However, the delay effect was almost identical in all target areas. Based on the simulation results in this study, we planned green infrastructure, including green roofs, infiltration storage facilities, and porous pavement. We believe that the results of this study can significantly enhance the efficiency of urban flood restoration and green infrastructure planning in coastal cities.

Suggested Citation

  • Kihwan Song & Min Kim & Han-Min Kang & Eun-Kyung Ham & Junsung Noh & Jong Seong Khim & Jinhyung Chon, 2022. "Stormwater runoff reduction simulation model for urban flood restoration in coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2509-2526, December.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05477-7
    DOI: 10.1007/s11069-022-05477-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05477-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05477-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Okmyung Bin & Jamie Brown Kruse & Craig E. Landry, 2008. "Flood Hazards, Insurance Rates, and Amenities: Evidence From the Coastal Housing Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(1), pages 63-82, March.
    2. S. Shahapure & T. Eldho & E. Rao, 2010. "Coastal Urban Flood Simulation Using FEM, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3615-3640, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Teixeira Dias & Gisele Mazon & Priscila Cembranel & Robert Birch & José Baltazar Salgueirinho Osório de Andrade Guerra, 2022. "Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review," Land, MDPI, vol. 12(1), pages 1-14, December.
    2. Kihwan Song & Youngsun Seok & Jinhyung Chon, 2023. "Nature-Based Restoration Simulation for Disaster-Prone Coastal Area Using Green Infrastructure Effect," IJERPH, MDPI, vol. 20(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    2. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    3. Mutlu, Asli & Roy, Debraj & Filatova, Tatiana, 2023. "Capitalized value of evolving flood risks discount and nature-based solution premiums on property prices," Ecological Economics, Elsevier, vol. 205(C).
    4. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    5. V. Kerry Smith & Ben Whitmore, 2019. "Amenities, Risk, and Flood Insurance Reform," NBER Working Papers 25580, National Bureau of Economic Research, Inc.
    6. Kousky, Carolyn & Walls, Margaret, 2014. "Floodplain conservation as a flood mitigation strategy: Examining costs and benefits," Ecological Economics, Elsevier, vol. 104(C), pages 119-128.
    7. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    8. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    9. Meri Davlasheridze & Qing Miao, 2021. "Natural disasters, public housing, and the role of disaster aid," Journal of Regional Science, Wiley Blackwell, vol. 61(5), pages 1113-1135, November.
    10. Samarasinghe, Oshadhi & Sharp, Basil M.H., 2008. "Flood prone risk and amenity values: a spatial hedonic analysis," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6013, Australian Agricultural and Resource Economics Society.
    11. Céline Grislain-Letrémy & Bertrand Villeneuve, 2011. "Natural and Industrial Disasters : Land Use and Insurance," Working Papers 2011-32, Center for Research in Economics and Statistics.
    12. Graff Zivin, Joshua & Liao, Yanjun & Panassié, Yann, 2023. "How hurricanes sweep up housing markets: Evidence from Florida," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    13. Donadelli, M. & Jüppner, M. & Paradiso, A. & Ghisletti, M., 2020. "Tornado activity, house prices, and stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    14. Grislain-Letrémy, Céline & Katossky, Arthur, 2014. "The impact of hazardous industrial facilities on housing prices: A comparison of parametric and semiparametric hedonic price models," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 93-107.
    15. Athanasios Votsis & Adriaan Perrels, 2016. "Housing Prices and the Public Disclosure of Flood Risk: A Difference-in-Differences Analysis in Finland," The Journal of Real Estate Finance and Economics, Springer, vol. 53(4), pages 450-471, November.
    16. Tsvetan G. Tsvetanov & Farhed A. Shah, 2012. "The Economics of Protection against Sea-Level Rise: An Application to Coastal Properties in Connecticut," Working Papers 10, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    17. Robert J. Johnston & Klaus Moeltner, 2019. "Special Flood Hazard Effects on Coastal and Interior Home Values: One Size Does Not Fit All," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 181-210, September.
    18. Garbarino, Nicola & Guin, Benjamin, 2021. "High water, no marks? Biased lending after extreme weather," Journal of Financial Stability, Elsevier, vol. 54(C).
    19. Elyse Zavar & Sherri Brokopp Binder & Alex Greer & Amber Breaux, 2023. "Using the past to understand future property acquisitions: an examination of historic voluntary and mandatory household relocations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1973-1993, March.
    20. Lu Fang & Lingxiao Li & Abdullah Yavas, 2023. "The Impact of Distant Hurricane on Local Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 66(2), pages 327-372, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05477-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.