IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i13p3615-3640.html
   My bibliography  Save this article

Coastal Urban Flood Simulation Using FEM, GIS and Remote Sensing

Author

Listed:
  • S. Shahapure
  • T. Eldho
  • E. Rao

Abstract

In this paper, a rainfall runoff model for coastal urban watershed considering the effects of tidal variations using Finite Element Method (FEM) is presented. Overland flow is modeled using the mass balance equation considering the impervious character of the urban watershed. Storm water flow through the channel is modeled using the diffusion wave form of the Saint Venant’s equations and considering the tidal variations. Galerkin’s FEM is used in the approximation of the governing equations. One dimensional linear line elements are used in the channel discretization. Further the mass balance based overland flow model and diffusion wave based channel flow model have been integrated for prediction of flood. Slope values for the overland flow are determined using the Geographical Information System (GIS) from the Digital Elevation Model (DEM) of the area. The landuse is determined using the remote sensing data. Remote sensing data is analyzed using the ERDAS Imagine and ArcGIS and the Manning’s roughness is calculated for each subdivision of subcatchment. The developed models have been verified with the models available in literature and are found to be satisfactory. Further, the integrated model has been applied to the runoff simulation of a coastal urban watershed in Navi Mumbai, in Maharashtra state of India to analyze the flooding in monsoon season along with the tidal influences. The model could satisfactorily predict the runoff due to monsoon rains coupled with the tidal variations. The developed model will be useful in the urban coastal flood analysis due to heavy rainfall and tidal effects. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • S. Shahapure & T. Eldho & E. Rao, 2010. "Coastal Urban Flood Simulation Using FEM, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3615-3640, October.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3615-3640
    DOI: 10.1007/s11269-010-9623-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9623-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9623-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy Venkata & T. Eldho & E. Rao & N. Chithra, 2008. "A Distributed Kinematic Wave–Philip Infiltration Watershed Model Using FEM, GIS and Remotely Sensed Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(6), pages 737-755, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Zhang & Ping Feng & Čedo Maksimović & Paul Bates, 2016. "Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 823-841, January.
    2. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    3. Pierfranco Costabile & Francesco Macchione, 2012. "Analysis of One-Dimensional Modelling for Flood Routing in Compound Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1065-1087, March.
    4. Kihwan Song & Min Kim & Han-Min Kang & Eun-Kyung Ham & Junsung Noh & Jong Seong Khim & Jinhyung Chon, 2022. "Stormwater runoff reduction simulation model for urban flood restoration in coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2509-2526, December.
    5. Ting Zhang & Ping Feng & Čedo Maksimović & Paul D. Bates, 2016. "Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 823-841, January.
    6. José Pinho & Rui Ferreira & Luís Vieira & Dirk Schwanenberg, 2015. "Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 431-444, January.
    7. A. Kulkarni & T. Eldho & E. Rao & B. Mohan, 2014. "An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 403-425, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Yan & X. Su & Y. Chen, 2009. "Functional Structure and Data Management of Urban Water Supply Network Based on GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2633-2653, October.
    2. T. Reshma & K. Reddy & Deva Pratap & Mehdi Ahmedi & V. Agilan, 2015. "Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4589-4606, October.
    3. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    4. Shoja Ghorbani Dashtaki & Mehdi Homaee & Mohammad Mahdian & Mehdi Kouchakzadeh, 2009. "Site-Dependence Performance of Infiltration Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2777-2790, October.
    5. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    6. Jordan Clayton & Jason Kean, 2010. "Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3641-3664, October.
    7. Renato Morbidelli & Corrado Corradini & Carla Saltalippi & Luca Brocca, 2012. "Initial Soil Water Content as Input to Field-Scale Infiltration and Surface Runoff Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1793-1807, May.
    8. I. Argyrokastritis & G. Kargas & P. Kerkides, 2009. "Simulation of Soil Moisture Profiles Using K(h) from Coupling Experimental Retention Curves and One-Step Outflow Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3255-3266, December.
    9. Shin-Jen Cheng, 2010. "Generation of Runoff Components from Exponential Expressions of Serial Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3561-3590, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3615-3640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.