IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3096-d1064016.html
   My bibliography  Save this article

Nature-Based Restoration Simulation for Disaster-Prone Coastal Area Using Green Infrastructure Effect

Author

Listed:
  • Kihwan Song

    (OJEong Resilience Institute, Korea University, Seoul 02841, Republic of Korea)

  • Youngsun Seok

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Jinhyung Chon

    (Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea)

Abstract

Floods in coastal areas are caused by a range of complex factors such as typhoons and heavy rainfall, and this issue has become increasingly serious as interference has occurred in the social-ecological system in recent years. Given the structural limitations and high maintenance costs of the existing gray infrastructure, the need for a nature-based restoration plan utilizing green infrastructure has been raised. The purpose of this study is to simulate the restoration process through the quantification of green infrastructure effects along with resilience in disaster-prone coastal areas, and to present it as nature-based restoration planning. For this purpose, first, a disaster-prone area was derived from Haeundae-gu, Busan, Republic of Korea, which was affected by typhoons. In order to simulate the runoff from typhoon “Chaba” in the target area and the effects of reducing the runoff of green infrastructure, relevant data was collected and a model constructed. Finally, the effects of the green infrastructure as applied to the disaster-prone area were quantified by means of resilience and a nature-based restoration plan was presented. As a result of this study, first, the runoff reduction effect was greatest when the maximum biotope area ratio of 30% was applied to the artificial ground. In the case of the green roof, the effect was the greatest 6 h following the typhoon passing through, and the effects of the infiltration storage facility was greater 9 h following the same. Porous pavement exhibited the lowest runoff reduction effect. In terms of resilience, it was found that the system was restored to its original state after the biotope area ratio of 20% was applied. This study is significant in that it analyzes the effects of green infrastructure based upon the concept of resilience and connects them to nature-based restoration planning. Based on this, it will be provided as an important tool for planning policy management to effectively respond to future coastal disasters.

Suggested Citation

  • Kihwan Song & Youngsun Seok & Jinhyung Chon, 2023. "Nature-Based Restoration Simulation for Disaster-Prone Coastal Area Using Green Infrastructure Effect," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3096-:d:1064016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wonmin Sohn & Jun-Hyun Kim & Ming-Han Li, 2017. "Low-impact development for impervious surface connectivity mitigation: assessment of directly connected impervious areas (DCIAs)," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(10), pages 1871-1889, October.
    2. Kihwan Song & Min Kim & Han-Min Kang & Eun-Kyung Ham & Junsung Noh & Jong Seong Khim & Jinhyung Chon, 2022. "Stormwater runoff reduction simulation model for urban flood restoration in coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2509-2526, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Teixeira Dias & Gisele Mazon & Priscila Cembranel & Robert Birch & José Baltazar Salgueirinho Osório de Andrade Guerra, 2022. "Land Use and Global Environmental Change: An Analytical Proposal Based on A Systematic Review," Land, MDPI, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3096-:d:1064016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.