IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i2d10.1007_s11069-022-05435-3.html
   My bibliography  Save this article

A large-scale waterlogging investigation in a megacity

Author

Listed:
  • Lu Liu

    (Ministry of Water Resources
    Tsinghua University)

  • Jian Sun

    (Tsinghua University)

  • Binliang Lin

    (Tsinghua University)

Abstract

With a growing number of waterlogging events occurring in large cities, a better understanding and prediction of the urban flooding processes are essential in order to reduce their impacts. A two-dimensional hydrodynamic model was used to simulate a surface water flooding process due to a heavy rainstorm event in the urban area of Beijing. Through incorporating road networks over the large area, an enhanced digital elevation model was presented to describe overland flow through surface pathways and waterlogging forming along the main roads. Rainfall data obtained from a large number of rain gauge stations in Beijing City throughout the whole storm event were acquired. The model was capable of reproducing the hydrodynamic process at the city scale, and it was found that surface runoff generated quickly from the surrounding community areas to roads and accumulated in depression areas. Waterlogging sites reported in the media were extracted, with most of the sites being on roads and predicted reasonably. Waterlogging issues were found generally to be a local feature and closely associated with rainfall intensity.

Suggested Citation

  • Lu Liu & Jian Sun & Binliang Lin, 2022. "A large-scale waterlogging investigation in a megacity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1505-1524, November.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05435-3
    DOI: 10.1007/s11069-022-05435-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05435-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05435-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. HaiBo Hu, 2016. "Rainstorm flash flood risk assessment using genetic programming: a case study of risk zoning in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 485-500, August.
    2. Craig Lashford & Matteo Rubinato & Yanpeng Cai & Jingming Hou & Soroush Abolfathi & Stephen Coupe & Susanne Charlesworth & Simon Tait, 2019. "SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    3. Zaw Myo Khaing & Ke Zhang & Hisaya Sawano & Badri Bhakra Shrestha & Takahiro Sayama & Kazuhiro Nakamura, 2019. "Flood hazard mapping and assessment in data-scarce Nyaungdon area, Myanmar," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-18, November.
    4. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    5. Qingyu Huang & Jun Wang & Mengya Li & Moli Fei & Jungang Dong, 2017. "Modeling the influence of urbanization on urban pluvial flooding: a scenario-based case study in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1035-1055, June.
    6. Xiaodan Wu & Dapeng Yu & Zhongyuan Chen & Robert Wilby, 2012. "An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 305-323, September.
    7. Yan-Fang Sang & Moyuan Yang, 2017. "Urban waterlogs control in China: more effective strategies and actions are needed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1291-1294, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    2. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    3. Huafei Yu & Yaolong Zhao & Yingchun Fu & Le Li, 2018. "Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    4. Li Liu & Xing Li & Gaoyuan Xia & Juliang Jin & Guowei Chen, 2016. "Spatial fuzzy clustering approach to characterize flood risk in urban storm water drainage systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1469-1483, September.
    5. Vladimir Krivtsov & Brian J. D’Arcy & Alejandro Escribano Sevilla & Scott Arthur & Chris Semple, 2021. "Mitigating Polluted Runoff from Industrial Estates by SUDS Retrofits: Case Studies of Problems and Solutions Co-Designed with a Participatory Approach," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    6. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    7. Xiao Liang & Yuqing Liang & Chong Chen & Meine Pieter van Dijk, 2020. "Implementing Water Policies in China: A Policy Cycle Analysis of the Sponge City Program Using Two Case Studies," Sustainability, MDPI, vol. 12(13), pages 1-11, June.
    8. Xiao Liang, 2018. "Integrated Economic and Financial Analysis of China’s Sponge City Program for Water-resilient Urban Development," Sustainability, MDPI, vol. 10(3), pages 1-12, March.
    9. Qingyu Huang & Jun Wang & Mengya Li & Moli Fei & Jungang Dong, 2017. "Modeling the influence of urbanization on urban pluvial flooding: a scenario-based case study in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1035-1055, June.
    10. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    11. Hui Zhang & Jiong Cheng & Zhifeng Wu & Cheng Li & Jun Qin & Tong Liu, 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    12. Xianhua Wu & Jiqiang Zhao & Yun Kuai & Ji Guo & Ge Gao, 2021. "Construction and verification of a rainstorm death risk index based on grid data fusion: a case study of the Beijing rainstorm on July 21, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2293-2318, July.
    13. Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China," Climatic Change, Springer, vol. 119(3), pages 919-932, August.
    14. Mingwu Ye & Jun Wang & Jing Huang & Shiyuan Xu & Zhenlou Chen, 2012. "Methodology and its application for community-scale evacuation planning against earthquake disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 881-892, April.
    15. Juan Fan & Guangwei Huang, 2020. "Evaluation of Flood Risk Management in Japan through a Recent Case," Sustainability, MDPI, vol. 12(13), pages 1-17, July.
    16. Priscila Barros Ramalho Alves & Iana Alexandra Alves Rufino & Patrícia Hermínio Cunha Feitosa & Slobodan Djordjević & Akbar Javadi, 2020. "Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    17. Jie Yin & Yameng Jing & Dapeng Yu & Mingwu Ye & Yuhan Yang & Banggu Liao, 2019. "A Vulnerability Assessment of Urban Emergency in Schools of Shanghai," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    18. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    19. Quntao Yang & Shuliang Zhang & Qiang Dai & Rui Yao, 2020. "Improved Framework for Assessing Vulnerability to Different Types of Urban Floods," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    20. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05435-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.