IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i3p881-892.html
   My bibliography  Save this article

Methodology and its application for community-scale evacuation planning against earthquake disaster

Author

Listed:
  • Mingwu Ye
  • Jun Wang
  • Jing Huang
  • Shiyuan Xu
  • Zhenlou Chen

Abstract

In urban area, popular and property is accumulated in a small area, potential risk of earthquake disaster in urban community is great. Pre-disaster emergency evacuation zoning has become a significant topic of disaster prevention and mitigation research. Based on the present layout of evacuation facilities and shelters as well as the evacuation demands in urban communities, a systematical methodology for occupant evacuation against earthquakes on community scale was developed by employing spatial analysis techniques of Geographical Information System (GIS). The methodology included the following aspects: the distribution analysis of emergency evacuation demands, the calculation of shelter space accessibility, and the optimization of evacuation destinations. This methodology was applied to Lujiazui Street in Pudong, a new district located in Shanghai, China. It was found that the proposed methodology could be used to formulate pre-event planning for earthquake disaster prevention and mitigation on a community scale, especially for organizing a rapid and smooth evacuation and optimizing the location allocation of shelters. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Mingwu Ye & Jun Wang & Jing Huang & Shiyuan Xu & Zhenlou Chen, 2012. "Methodology and its application for community-scale evacuation planning against earthquake disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 881-892, April.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:3:p:881-892
    DOI: 10.1007/s11069-011-9803-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9803-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9803-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    2. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuke Toyoda & Hidehiko Kanegae, 2014. "A community evacuation planning model against urban earthquakes," Regional Science Policy & Practice, Wiley Blackwell, vol. 6(3), pages 231-249, August.
    2. Hisao Nakai & Ryo Horiike & Tomoya Itatani & Yukari Matsumoto, 2022. "Childcare Center Evacuation to Vertical Shelters in a Nankai Trough Tsunami: Models to Predict and Mitigate Risk," Challenges, MDPI, vol. 13(2), pages 1-13, September.
    3. Emerson Rico & Jomar Rabajante & Jerrold Tubay & Aileen Lapitan & Val Randolf Madrid, 2024. "A multi-objective site selection model for evacuation centers in Taguig City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8303-8321, July.
    4. Dinh-Thanh Nguyen & Zhen-jiang Shen & Minh-Hoang Truong & Kenichi Sugihara, 2021. "Improvement of Evacuation Modeling by Considering Road Blockade in the Case of an Earthquake: A Case Study of Daitoku School District, Kanazawa City, Japan," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    5. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    6. Hiranya Sritart & Hiroyuki Miyazaki & Sakiko Kanbara & Takashi Hara, 2020. "Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    7. Oscar Rodríguez-Espíndola & Juan Gaytán, 2015. "Scenario-based preparedness plan for floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1241-1262, March.
    8. Hooman Motamed & Mohsen Ghafory-Ashtiany & Kambod Amini-Hosseini & Babak Mansouri & Bijan Khazai, 2020. "Earthquake risk–sensitive model for urban land use planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 87-102, August.
    9. Jiayan Chen & Jia Yu & Jiahong Wen & Chuanrong Zhang & Zhan’e Yin & Jianping Wu & Shenjun Yao, 2019. "Pre-evacuation Time Estimation Based Emergency Evacuation Simulation in Urban Residential Communities," IJERPH, MDPI, vol. 16(23), pages 1-25, November.
    10. Hsueh-Sheng Chang & Chin-Hsien Liao, 2015. "Planning emergency shelter locations based on evacuation behavior," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1551-1571, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    2. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    3. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    4. Arman Nedjati & Bela Vizvari & Gokhan Izbirak, 2016. "Post-earthquake response by small UAV helicopters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1669-1688, February.
    5. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    6. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    7. Preethi Issac & Ann Melissa Campbell, 2017. "Shortest path problem with arc failure scenarios," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 139-163, June.
    8. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    9. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    10. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    11. Mohsen Alawi & Dongzhu Chu & Seba Hammad, 2023. "Resilience of Public Open Spaces to Earthquakes: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    12. Ertem, Mustafa A. & Buyurgan, Nebil & Pohl, Edward A., 2012. "Using announcement options in the bid construction phase for disaster relief procurement," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 306-314.
    13. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    14. Caunhye, Aakil M. & Li, Mingzhe & Nie, Xiaofeng, 2015. "A location-allocation model for casualty response planning during catastrophic radiological incidents," Socio-Economic Planning Sciences, Elsevier, vol. 50(C), pages 32-44.
    15. Dean, Matthew D. & Nair, Suresh K., 2014. "Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model," European Journal of Operational Research, Elsevier, vol. 238(1), pages 363-373.
    16. Lu Liu & Jian Sun & Binliang Lin, 2022. "A large-scale waterlogging investigation in a megacity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1505-1524, November.
    17. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    18. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    19. Muhammad Salman Habib & Biswajit Sarkar, 2017. "An Integrated Location-Allocation Model for Temporary Disaster Debris Management under an Uncertain Environment," Sustainability, MDPI, vol. 9(5), pages 1-26, April.
    20. TALARICO, Luca & MEISEL, Frank & SÖRENSEN, Kenneth, 2014. "Ambulance routing for disaster response with patient groups," Working Papers 2014005, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:3:p:881-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.