IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p661-d309470.html
   My bibliography  Save this article

Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil

Author

Listed:
  • Priscila Barros Ramalho Alves

    (Centre for Water Systems, University of Exeter, Exeter EX4 4QF, UK)

  • Iana Alexandra Alves Rufino

    (PPGECA, Federal University of Campina Grande, Campina Grande, PB 58428-830, Brazil)

  • Patrícia Hermínio Cunha Feitosa

    (PPGECA, Federal University of Campina Grande, Campina Grande, PB 58428-830, Brazil)

  • Slobodan Djordjević

    (Centre for Water Systems, University of Exeter, Exeter EX4 4QF, UK)

  • Akbar Javadi

    (Centre for Water Systems, University of Exeter, Exeter EX4 4QF, UK)

Abstract

In developing countries, the urbanisation process occurs with empirical urban management, a high increase of impermeable areas, and a lack of connection between water resource management and planning. In Brazil, concentrated rainfall and ineffective urban drainage systems add to this context and may impact the population with flash floods. Although sustainable drainage systems (SuDS) are widely used for flood mitigation, it is still not very well known how those strategies behave in semi-arid regions, where most of the time the weather is very dry. In Brazil, flood mitigation still mostly involves structural measures such as larger pipes or channels, with limited guidance for SuDS use due to the great resistance to change by citizens and managers. This study sought to analyse the efficacy of SuDS in Campina Grande, a semi-arid region of Brazil. A land-use and legislation-based methodology was developed with physical, climate, hydrological and governance data for three catchments and 312 sub-catchments in 30 applications and simulations. Simulations suggest that these strategies would be appropriate for semi-arid regions, with reductions in the flooded area, flooding volume, and impacts. This study is of relevance for cities with a similar climate to reach a sustainable level of urban drainage services, supporting the integration of urban planning and water resources management.

Suggested Citation

  • Priscila Barros Ramalho Alves & Iana Alexandra Alves Rufino & Patrícia Hermínio Cunha Feitosa & Slobodan Djordjević & Akbar Javadi, 2020. "Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:661-:d:309470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Ako & Gloria Eyong & George Nkeng, 2010. "Water Resources Management and Integrated Water Resources Management (IWRM) in Cameroon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 871-888, March.
    2. Paulo Augusto Cunha Libanio, 2014. "The use of goal-oriented strategies in the building of water governance in Brazil," Water International, Taylor & Francis Journals, vol. 39(4), pages 401-416, July.
    3. Ignacio Andrés-Doménech & Sara Perales-Momparler & Adrián Morales-Torres & Ignacio Escuder-Bueno, 2018. "Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions," Sustainability, MDPI, vol. 10(9), pages 1-15, August.
    4. Sara Lucía Jiménez Ariza & José Alejandro Martínez & Andrés Felipe Muñoz & Juan Pablo Quijano & Juan Pablo Rodríguez & Luis Alejandro Camacho & Mario Díaz-Granados, 2019. "A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas," Sustainability, MDPI, vol. 11(8), pages 1-33, April.
    5. Craig Lashford & Matteo Rubinato & Yanpeng Cai & Jingming Hou & Soroush Abolfathi & Stephen Coupe & Susanne Charlesworth & Simon Tait, 2019. "SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    6. P. A. C. Libanio, 2018. "Two decades of Brazil’s participatory model for water resources management: from enthusiasm to frustration," Water International, Taylor & Francis Journals, vol. 43(4), pages 494-511, May.
    7. Mariana L. R. Goncalves & Jonatan Zischg & Sven Rau & Markus Sitzmann & Wolfgang Rauch & Manfred Kleidorfer, 2018. "Modeling the Effects of Introducing Low Impact Development in a Tropical City: A Case Study from Joinville, Brazil," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priscila Barros Ramalho Alves & Maria José de Sousa Cordão & Slobodan Djordjević & Akbar A. Javadi, 2020. "Place-Based Citizen Science for Assessing Risk Perception and Coping Capacity of Households Affected by Multiple Hazards," Sustainability, MDPI, vol. 13(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carole D. Nounkeu & Jigna M. Dharod, 2020. "A Qualitative Examination of Water Access and Related Coping Behaviors to Understand Its Link to Food Insecurity among Rural Households in the West Region in Cameroon," IJERPH, MDPI, vol. 17(13), pages 1-12, July.
    2. Vladimir Krivtsov & Brian J. D’Arcy & Alejandro Escribano Sevilla & Scott Arthur & Chris Semple, 2021. "Mitigating Polluted Runoff from Industrial Estates by SUDS Retrofits: Case Studies of Problems and Solutions Co-Designed with a Participatory Approach," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    3. Wafaa Ali & Husna Takaijudin & Khamaruzaman Wan Yusof & Manal Osman & Abdurrasheed Sa’id Abdurrasheed, 2021. "The Common Approaches of Nitrogen Removal in Bioretention System," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    4. Chi-Feng Chen & Jhe-Wei Lin & Jen-Yang Lin, 2022. "Hydrological Cycle Performance at a Permeable Pavement Site and a Raingarden Site in a Subtropical Region," Land, MDPI, vol. 11(6), pages 1-16, June.
    5. Gao, Hongchao & Wei, Tong & Lou, Inchio & Yang, Zhifeng & Shen, Zhenyao & Li, Yingxia, 2014. "Water saving effect on integrated water resource management," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 50-58.
    6. Valeria Serrano-Núñez & Karolina Villagra-Mendoza & Natalia Gamboa-Alpízar & Miriam Miranda-Quirós & Fernando Watson-Hernández, 2024. "Evaluation of the Hydrological Response of Nature-Based Solutions (NBS) in Socio-Economically Vulnerable Tropical Urban Settlements: A Case Study in La Guapil, Costa Rica, Under Climate Change Scenari," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
    7. Iana Rufino & Slobodan Djordjević & Higor Costa de Brito & Priscila Barros Ramalho Alves, 2021. "Multi-Temporal Built-Up Grids of Brazilian Cities: How Trends and Dynamic Modelling Could Help on Resilience Challenges?," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    8. Ignacio Andrés-Doménech & Jose Anta & Sara Perales-Momparler & Jorge Rodriguez-Hernandez, 2021. "Sustainable Urban Drainage Systems in Spain: A Diagnosis," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    9. Yuanyuan Yang & Wenhui Zhang & Zhe Liu & Dengfeng Liu & Qiang Huang & Jun Xia, 2023. "Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    10. Lena Simperler & Martina Glanzer & Thomas Ertl & Florian Kretschmer, 2020. "Identification and Pre-Assessment of Former Watercourses to Support Urban Stormwater Management," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    11. Inmaculada Picon-Cabrera & Jesus Maria Garcia-Gago & Luis Javier Sanchez-Aparicio & Pablo Rodriguez-Gonzalvez & Diego Gonzalez-Aguilera, 2020. "On the Use of Historical Flights for the Urban Growth Analysis of Cities Through Time: The Case Study of Avila (Spain)," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    12. Yixin Zhou & Ashutosh Sharma & Mehedi Masud & Gurjot Singh Gaba & Gaurav Dhiman & Kayhan Zrar Ghafoor & Mohammed A. AlZain, 2021. "Urban Rain Flood Ecosystem Design Planning and Feasibility Study for the Enrichment of Smart Cities," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    13. Suleiman, Lina, 2021. "Blue green infrastructure, from niche to mainstream: Challenges and opportunities for planning in Stockholm," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    14. Tantoh, Henry Bikwibili & Simatele, Danny, 2018. "Complexity and uncertainty in water resource governance in Northwest Cameroon: Reconnoitring the challenges and potential of community-based water resource management," Land Use Policy, Elsevier, vol. 75(C), pages 237-251.
    15. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    16. Dwarikanath Ratha & V. Agrawal, 2014. "Structural Modeling and Analysis of Water Resources Development and Management System: A Graph Theoretic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2981-2997, August.
    17. Adriana A. Zuniga-Teran & Andrea K. Gerlak, 2019. "A Multidisciplinary Approach to Analyzing Questions of Justice Issues in Urban Greenspace," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    18. Dudley Saunders & John Martin, 2022. "The Role of Green Infrastructure in Pluvial Flood Management and the Legislation Surrounding It: A Case Study in Bristol, UK," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    19. Elvira Nicolini & Antonella Mamì, 2023. "Circular Water Management in Public Space—Experimental Feasibility Studies in Different Urban Contexts," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    20. Juliana Uribe-Aguado & Sara L. Jiménez-Ariza & María N. Torres & Natalia A. Bernal & Mónica M. Giraldo-González & Juan P. Rodríguez, 2022. "A SUDS Planning Decision Support Tool to Maximize Ecosystem Services," Sustainability, MDPI, vol. 14(8), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:661-:d:309470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.