IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v63y2012i2p305-323.html
   My bibliography  Save this article

An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai

Author

Listed:
  • Xiaodan Wu
  • Dapeng Yu
  • Zhongyuan Chen
  • Robert Wilby

Abstract

Despite continuing efforts to upgrade the urban storm sewer system since the late 1950s, the City of Shanghai is still vulnerable to persistent rainstorm waterlogging due to excess surface runoff and sewer surcharge, which frequently cause significant damage to buildings and disruption to traffic. Rapid urbanization and associated land cover changes are the major factors contributing to waterlogging. However, it is unclear to what extent changes in rainfall variability over the past few decades are also involved. This paper investigates the combined impacts of land use and land cover change, storm sewer development, and long-term variations in precipitation. Evidence of persistent waterlogging is presented first. We then give an account of land surface modifications during the process of urbanization and the development of the city’s urban storm sewer system. Statistical analysis suggests that the increase in runoff coefficient due to conversion of lands from agricultural to industrial, commercial, and residential uses is a major factor driving greater waterlogging risk. In particular, historical analysis of aerial photographs reveals the rate and extent of modification to river networks in the past few decades. The natural drainage network has shrunk by 270 km, significantly reducing the city’s capacity to transport excess surface flow. In line with other studies, we find no significant overall trends in annual rainfall totals (at Baoshan and Xujiahui). However, seasonal and monthly rainfall intensities have increased. At the daily scale, we find that compared to pre-1980s: (i) there has been an increase in the number of wet days with precipitation exceeding 25 mm (Heavy Rainfall) and decrease in those below 25 mm and (ii) the number of consecutive wet days with precipitation maximum and average exceeding the threshold known to cause waterlogging shows an increasing trend. Since rainfall intensity is expected to increase under climate change, this could further compound the impacts of land use changes and place even greater pressure on the existing storm sewer system. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Xiaodan Wu & Dapeng Yu & Zhongyuan Chen & Robert Wilby, 2012. "An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 305-323, September.
  • Handle: RePEc:spr:nathaz:v:63:y:2012:i:2:p:305-323
    DOI: 10.1007/s11069-012-0153-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0153-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0153-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Shi & Chun Shi & Shi-Yuan Xu & A-Li Sun & Jun Wang, 2010. "Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 259-272, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    2. Jie Yin & Yameng Jing & Dapeng Yu & Mingwu Ye & Yuhan Yang & Banggu Liao, 2019. "A Vulnerability Assessment of Urban Emergency in Schools of Shanghai," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    3. Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Multiple scenario analyses of Huangpu River flooding using a 1D/2D coupled flood inundation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 577-589, March.
    4. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    5. Li Liu & Xing Li & Gaoyuan Xia & Juliang Jin & Guowei Chen, 2016. "Spatial fuzzy clustering approach to characterize flood risk in urban storm water drainage systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1469-1483, September.
    6. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    7. Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China," Climatic Change, Springer, vol. 119(3), pages 919-932, August.
    8. Chaohui Chen & Yindong Zhang & Yihan Lou & Ziyi Tang & Pin Wang & Tangao Hu, 2024. "Impact of Refined Boundary Conditions of Land Objects on Urban Hydrological Process Simulation," Land, MDPI, vol. 13(11), pages 1-22, November.
    9. Lu Liu & Jian Sun & Binliang Lin, 2022. "A large-scale waterlogging investigation in a megacity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1505-1524, November.
    10. Hui Zhang & Jiong Cheng & Zhifeng Wu & Cheng Li & Jun Qin & Tong Liu, 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    11. Huafei Yu & Yaolong Zhao & Yingchun Fu & Le Li, 2018. "Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    12. Qingyu Huang & Jun Wang & Mengya Li & Moli Fei & Jungang Dong, 2017. "Modeling the influence of urbanization on urban pluvial flooding: a scenario-based case study in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1035-1055, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    2. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    3. Mingwu Ye & Jun Wang & Jing Huang & Shiyuan Xu & Zhenlou Chen, 2012. "Methodology and its application for community-scale evacuation planning against earthquake disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 881-892, April.
    4. Lu Liu & Jian Sun & Binliang Lin, 2022. "A large-scale waterlogging investigation in a megacity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1505-1524, November.
    5. Li Liu & Xing Li & Gaoyuan Xia & Juliang Jin & Guowei Chen, 2016. "Spatial fuzzy clustering approach to characterize flood risk in urban storm water drainage systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1469-1483, September.
    6. Yong Shi, 2013. "Population vulnerability assessment based on scenario simulation of rainstorm-induced waterlogging: a case study of Xuhui District, Shanghai City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1189-1203, March.
    7. Yaolong Liu & Zhenlou Chen & Jun Wang & Beibei Hu & Mingwu Ye & Shiyuan Xu, 2012. "Large-scale natural disaster risk scenario analysis: a case study of Wenzhou City, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1287-1298, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:63:y:2012:i:2:p:305-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.