IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i3d10.1007_s11069-022-05275-1.html
   My bibliography  Save this article

Spotting areas critical to storm waves and surge impacts on coasts with data scarcity: a case study in Santa Catarina, Brazil

Author

Listed:
  • Karen C. Pazini

    (Federal University of Santa Catarina)

  • Jarbas Bonetti

    (Federal University of Santa Catarina)

  • Paula Gomes Silva

    (Federal University of Santa Catarina
    Universidad de Cantabria, Parque Científico y Tecnolóogico de Cantabria)

  • Antonio Henrique Fontoura Klein

    (Federal University of Santa Catarina)

Abstract

The impacts of severe storms on the coastal zone, combined with rapid population growth in this area, have made coastal risk management an urgent need. However, integrated risk assessment can be a challenging task for many locations worldwide, as it normally requires the use of a large amount of data. The Coastal Risk Assessment Framework phase one (CRAF1) is a recently proposed analytical scheme based on empirical models and spatial analysis that combines different indicators to identify storm-induced hotspots. With a high degree of flexibility, the methodology was originally designed to be of broad use. Still, there is little information about the tool applicability in data scarcity conditions. In this study, we show that this approach can be applied, with some simplifications, on data-poor areas, allowing the identification of hotspots considering one or multiple hazards. Here, the coastal risk was assessed for erosion and coastal flooding events with return periods of 10 and 50 years on the Santa Catarina Central Coast. The study area is characterized by the occurrence of storm-induced impacts that historically cause disruption and damage to local communities. Although the components of risk have been assessed using various methods along this sector, to date, no integrated risk analysis has been presented in probabilistic terms. Predicted scenarios for the Santa Catarina Central Coast suggest that extreme episodes may cause several impacts, exposing urban settlements as well local road systems, especially in the municipalities of Tijucas and Florianópolis. The results show that the CRAF1 is an appropriate approach for a first-level risk analysis, even when implemented with poor data resolution, as it effectively points to some of the most vulnerable stretches detected in the study area.

Suggested Citation

  • Karen C. Pazini & Jarbas Bonetti & Paula Gomes Silva & Antonio Henrique Fontoura Klein, 2022. "Spotting areas critical to storm waves and surge impacts on coasts with data scarcity: a case study in Santa Catarina, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2493-2521, July.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05275-1
    DOI: 10.1007/s11069-022-05275-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05275-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05275-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cibele Oliveira Lima & Jarbas Bonetti, 2020. "Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1589-1610, July.
    2. Wolfgang Kron, 2013. "Coasts: the high-risk areas of the world," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1363-1382, April.
    3. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Martin Verlaan & Svetlana Jevrejeva & Luke P. Jackson & Luc Feyen, 2018. "Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    2. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    3. Martins Fernando L.C. & Giordano Fabio & Barrella Walter, 2021. "Socio-Environmental Vulnerability of Water in the Estuary of the Metropolitan Region of Santos (Brazil)," Quaestiones Geographicae, Sciendo, vol. 40(4), pages 113-125, December.
    4. Grant Smith & Nover Juria, 2019. "Diagnosis of historical inundation events in the Marshall Islands to assist early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 189-216, October.
    5. Argyroudis, Sotirios A. & Mitoulis, Stergios Aristoteles, 2021. "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    6. Vyddiyaratnam Pathmanandakumar & Sheeba Nettukandy Chenoli & Hong Ching Goh, 2021. "Linkages between Climate Change and Coastal Tourism: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    7. Alexandra Toimil & Iñigo J. Losada & Moisés Álvarez-Cuesta & Gonéri Cozannet, 2023. "Demonstrating the value of beaches for adaptation to future coastal flood risk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    9. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    10. Jan-Ludolf Merkens & Athanasios T. Vafeidis, 2018. "Using Information on Settlement Patterns to Improve the Spatial Distribution of Population in Coastal Impact Assessments," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    11. Shome, Samik & Hassan, M. Kabir & Verma, Sushma & Panigrahi, Tushar Ranjan, 2023. "Impact investment for sustainable development: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 770-800.
    12. Yebao Wang & Jiaqi Liu & Xin Du & Qian Liu & Xin Liu, 2021. "Temporal-spatial characteristics of storm surges and rough seas in coastal areas of Mainland China from 2000 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1273-1285, June.
    13. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    14. Salvatore F. Pileggi & Marius Indorf & Ayman Nagi & Wolfgang Kersten, 2020. "CoRiMaS—An Ontological Approach to Cooperative Risk Management in Seaports," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    15. Jasper Verschuur & Dewi Bars & Caroline A. Katsman & Sierd de Vries & Roshanka Ranasinghe & Sybren S. Drijfhout & Stefan G. J. Aarninkhof, 2020. "Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment," Climatic Change, Springer, vol. 162(2), pages 859-876, September.
    16. Georgia Siakara & Nikolaos Gourgouletis & Evangelos Baltas, 2024. "Assessing the Efficiency of Fully Two-Dimensional Hydraulic HEC-RAS Models in Rivers of Cyprus," Geographies, MDPI, vol. 4(3), pages 1-24, August.
    17. Wayde C. Morse & Cody Cox & Christopher J. Anderson, 2020. "Using Public Participation Geographic Information Systems (PPGIS) to Identify Valued Landscapes Vulnerable to Sea Level Rise," Sustainability, MDPI, vol. 12(17), pages 1-34, August.
    18. Xinmeng Shan & Jie Yin & Jun Wang, 2022. "Risk assessment of shanghai extreme flooding under the land use change scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1039-1060, January.
    19. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2022. "Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    20. L. Oosterhout & E. Koks & P. Beukering & S. Schep & T. Tiggeloven & S. Manen & M. Knaap & C. Duinmeijer & S. L. Buijs, 2023. "An Integrated Assessment of Climate Change Impacts and Implications on Bonaire," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 147-178, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05275-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.