IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v102y2020i3d10.1007_s11069-020-03974-1.html
   My bibliography  Save this article

Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events

Author

Listed:
  • Cibele Oliveira Lima

    (Federal University of Santa Catarina (UFSC))

  • Jarbas Bonetti

    (Federal University of Santa Catarina (UFSC))

Abstract

Bibliometric analysis is a quantitative evaluation method for scientific research aiming at measuring knowledge expressed as scientific publications in a given field. This paper proposes to analyze the worldwide scientific production on social vulnerability of coastal populations through six bibliometric indicators: typology, historical evolution, geographic distribution, main sources, relevant authors and publications and recurring keywords. The research theme was chosen given the continuous increase of studies related to climatic changes and their consequences to populations in coastal zones. In total, 191 indexed documents covering the period from 1991 to 2019 were selected from the Scopus database, after the examination of more than 900 entries, and analyzed through VOSViewer software and the Bibliometrix R package. The results obtained confirmed the exponential growth of scientific production on this subject. Most frequently impacts considered were coastal flooding and erosion triggered by extreme events and the majority of studies have been presented as academic articles published in scientific journals. Moreover, most documents identified were site-specific, based on secondary data and associated with authors from the USA and the UK, with an emerging production related to authors from developing economies in recent years. Among the 658 authors found, only nine have published three or more articles on the theme, with citations highly concentrated in only four publications. The analysis also revealed the evolution of preferred keywords over time and the lack of consensus in the use of terminology. Studies about coastal social vulnerability were initially mostly focused on the evaluation of risks and exposure to hazards, evolving over time such that the focus shifted to adaptation measures seeking to minimize impacts from climate change to coastal zones.

Suggested Citation

  • Cibele Oliveira Lima & Jarbas Bonetti, 2020. "Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1589-1610, July.
  • Handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03974-1
    DOI: 10.1007/s11069-020-03974-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03974-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03974-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. Nathan Wood & Christopher Burton & Susan Cutter, 2010. "Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(2), pages 369-389, February.
    3. Corrado Cuccurullo & Massimo Aria & Fabrizia Sarto, 2016. "Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 595-611, August.
    4. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    5. Cuong Viet Nguyen & Ralph Horne & John Fien & France Cheong, 2017. "Assessment of social vulnerability to climate change at the local scale: development and application of a Social Vulnerability Index," Climatic Change, Springer, vol. 143(3), pages 355-370, August.
    6. E. C. M. Noyons & H. F. Moed & A. F. J. Raan, 1999. "Integrating research performance analysis and science mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 46(3), pages 591-604, November.
    7. W. Adger & P. Kelly, 1999. "Social Vulnerability to Climate Change and the Architecture of Entitlements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 4(3), pages 253-266, September.
    8. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    9. George Clark & Susanne Moser & Samuel Ratick & Kirstin Dow & William Meyer & Srinivas Emani & Weigen Jin & Jeanne Kasperson & Roger Kasperson & Harry Schwarz, 1998. "Assessing the Vulnerability of Coastal Communities to Extreme Storms: The Case of Revere, MA., USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(1), pages 59-82, January.
    10. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    11. Walter Leal Filho & Francine Modesto & Gustavo J. Nagy & Mustafa Saroar & Nsani YannickToamukum & Michael Ha’apio, 2018. "Fostering coastal resilience to climate change vulnerability in Bangladesh, Brazil, Cameroon and Uruguay: a cross-country comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(4), pages 579-602, April.
    12. Wolkin Amy & Burrer Sherry & Patterson Jennifer Rees & Soler Elena & Harris Shelly & McGeehin Michael & Greene Sandra, 2015. "Reducing Public Health Risk During Disasters: Identifying Social Vulnerabilities," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 12(4), pages 809-822, December.
    13. Henry Small, 1999. "Visualizing science by citation mapping," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 50(9), pages 799-813.
    14. Neil Adger, W., 1999. "Social Vulnerability to Climate Change and Extremes in Coastal Vietnam," World Development, Elsevier, vol. 27(2), pages 249-269, February.
    15. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    16. Lisa Rygel & David O’sullivan & Brent Yarnal, 2006. "A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 741-764, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2022. "Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    2. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    3. Hongming He & Claudio O. Delang & Jie Zhou & Yu Li & Wenming He, 2021. "Simulation of social resilience affected by extreme events in ancient China," Climatic Change, Springer, vol. 166(3), pages 1-23, June.
    4. Shome, Samik & Hassan, M. Kabir & Verma, Sushma & Panigrahi, Tushar Ranjan, 2023. "Impact investment for sustainable development: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 770-800.
    5. Karine Bastos Leal & Luís Eduardo de Souza Robaina & André de Souza De Lima, 2022. "Coastal impacts of storm surges on a changing climate: a global bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1455-1476, November.
    6. Karen C. Pazini & Jarbas Bonetti & Paula Gomes Silva & Antonio Henrique Fontoura Klein, 2022. "Spotting areas critical to storm waves and surge impacts on coasts with data scarcity: a case study in Santa Catarina, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2493-2521, July.
    7. Giuseppe Lucio Gaeta & Stefano Ghinoi & Matteo Masotti & Francesco Silvestri, 2021. "Economics research and climate change. A Scopus-based bibliometric investigation," SEEDS Working Papers 0321, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    8. Johnson Ankrah & Ana Monteiro & Helena Madureira, 2023. "Geospatiality of sea level rise impacts and communities’ adaptation: a bibliometric analysis and systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1-31, March.
    9. Vyddiyaratnam Pathmanandakumar & Sheeba Nettukandy Chenoli & Hong Ching Goh, 2021. "Linkages between Climate Change and Coastal Tourism: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    10. Hui-Zhen Fu & Ludo Waltman, 2022. "A large-scale bibliometric analysis of global climate change research between 2001 and 2018," Climatic Change, Springer, vol. 170(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    2. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Massimo Aria & Michelangelo Misuraca & Maria Spano, 2020. "Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 803-831, June.
    4. Tiodora Siagian & Purhadi Purhadi & Suhartono Suhartono & Hamonangan Ritonga, 2014. "Social vulnerability to natural hazards in Indonesia: driving factors and policy implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1603-1617, January.
    5. Oleksandr Didkovskyi & Giovanni Azzone & Alessandra Menafoglio & Piercesare Secchi, 2021. "Social and material vulnerability in the face of seismic hazard: An analysis of the Italian case," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1549-1577, October.
    6. Daminda Solangaarachchi & Amy Griffin & Michael Doherty, 2012. "Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1873-1898, November.
    7. Valentina Della Corte & Giovanna Del Gaudio & Fabiana Sepe & Fabiana Sciarelli, 2019. "Sustainable Tourism in the Open Innovation Realm: A Bibliometric Analysis," Sustainability, MDPI, vol. 11(21), pages 1-18, November.
    8. Juri Kim & Tae-Hyoung Tommy Gim, 2020. "Assessment of social vulnerability to floods on Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 101-114, May.
    9. Joshua T. Fergen & Ryan D. Bergstrom, 2021. "Social Vulnerability across the Great Lakes Basin: A County-Level Comparative and Spatial Analysis," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    10. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    11. Arouri, Mohamed & Nguyen, Cuong & Youssef, Adel Ben, 2015. "Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam," World Development, Elsevier, vol. 70(C), pages 59-77.
    12. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    13. Piya, Luni & Maharjan, Keshav Lall & Joshi, Niraj Prakash, 2012. "Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the Mid-Hills of Nepal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126191, International Association of Agricultural Economists.
    14. Annemarie Ebert & Norman Kerle & Alfred Stein, 2009. "Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 275-294, February.
    15. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    16. Kameliya Deyanova & Nataliia Brehmer & Artur Lapidus & Victor Tiberius & Steve Walsh, 2022. "Hatching start-ups for sustainable growth: a bibliometric review on business incubators," Review of Managerial Science, Springer, vol. 16(7), pages 2083-2109, October.
    17. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    18. Gerson Pech & Catarina Delgado, 2020. "Percentile and stochastic-based approach to the comparison of the number of citations of articles indexed in different bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 223-252, April.
    19. Gordana Budimir & Sophia Rahimeh & Sameh Tamimi & Primož Južnič, 2021. "Comparison of self-citation patterns in WoS and Scopus databases based on national scientific production in Slovenia (1996–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2249-2267, March.
    20. Eno Amos & Uduak Akpan & Kehinde Ogunjobi, 2015. "Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 887-908, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03974-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.