IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i3d10.1007_s11069-021-05007-x.html
   My bibliography  Save this article

Evaluating essential processes and forecast requirements for meteotsunami-induced coastal flooding

Author

Listed:
  • Chenfu Huang

    (Michigan Technological University)

  • Eric Anderson

    (National Oceanic and Atmospheric Administration
    Colorado School of Mines)

  • Yi Liu

    (One Concern, Inc)

  • Gangfeng Ma

    (Old Dominion University)

  • Greg Mann

    (National Oceanic and Atmospheric Administration)

  • Pengfei Xue

    (Michigan Technological University
    Michigan Technological University
    Argonne National Laboratory)

Abstract

Meteotsunamis pose a unique threat to coastal communities and often lead to damage of coastal infrastructure, deluge of nearby property, and loss of life and injury. The Great Lakes are a known hot-spot of meteotsunami activity and serve as an important region for investigation of essential hydrodynamic processes and model forecast requirements in meteotsunami-induced coastal flooding. For this work, we developed an advanced hydrodynamic model and evaluate key model attributes and dynamic processes, including: (1) coastal model grid resolution and wetting and drying process in low-lying zones, (2) coastal infrastructure, including breakwaters and associated submerging and overtopping processes, (3) annual/seasonal (ambient) water level change, and (4) wind wave-current coupling. Numerical experiments are designed to evaluate the importance of these attributes to meteotsunami modeling, including a “representative storm” scenario in the context of regional climate change in which a meteotsunami wave is generated under high ambient lake-level conditions with a preferable wind direction and speed for wind-wave growth. Results demonstrate that accurate representation of coastal topography and fully resolving associated hydrodynamic processes are critical to forecasting the realistic hazards associated with meteotsunami events. As most of existing coastal forecast systems generally do not resolve many of these features due to insufficient model grid resolution or lack of essential model attributes, this work shows that calibrating or assessing existing forecast models against coastal water level gauges alone may result in underestimating the meteotsunami hazard, particularly when gauging stations are sparse and located behind harbor breakwaters or inside estuaries, which represent dampened or otherwise unrepresentative pictures of meteotsunami intensity. This work is the first hydrodynamic modeling of meteotsunami-induced coastal flooding for the Great Lakes, and serves as a template to guide where resources may be most beneficial in forecast system development and implementation.

Suggested Citation

  • Chenfu Huang & Eric Anderson & Yi Liu & Gangfeng Ma & Greg Mann & Pengfei Xue, 2022. "Evaluating essential processes and forecast requirements for meteotsunami-induced coastal flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1693-1718, February.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05007-x
    DOI: 10.1007/s11069-021-05007-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05007-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05007-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhe Feng & L. Ruby Leung & Samson Hagos & Robert A. Houze & Casey D. Burleyson & Karthik Balaguru, 2016. "More frequent intense and long-lived storms dominate the springtime trend in central US rainfall," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    2. Michael Angove & Lewis Kozlosky & Philip Chu & Greg Dusek & Greg Mann & Eric Anderson & James Gridley & Diego Arcas & Vasily Titov & Marie Eble & Kimberly McMahon & Brian Hirsch & Walt Zaleski, 2021. "Addressing the meteotsunami risk in the united states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1467-1487, March.
    3. Ivica Vilibić & Alexander B. Rabinovich & Eric J. Anderson, 2021. "Special issue on the global perspective on meteotsunami science: editorial," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1087-1104, March.
    4. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabri Alkan & Uğur Karadurmuş, 2023. "Risk assessment of natural and other hazard factors on drowning incidents in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2459-2475, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emile A. Okal, 2021. "On the possibility of seismic recording of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1125-1147, March.
    2. Eric J. Anderson & Greg E. Mann, 2021. "A high-amplitude atmospheric inertia–gravity wave-induced meteotsunami in Lake Michigan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1489-1501, March.
    3. Leila M. V. Carvalho, 2020. "Assessing precipitation trends in the Americas with historical data: A review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    4. Alex M. Haberlie & Brendan Wallace & Walker S. Ashley & Vittorio A. Gensini & Allison C. Michaelis, 2024. "Mesoscale convective system activity in the United States under intermediate and extreme climate change scenarios," Climatic Change, Springer, vol. 177(6), pages 1-26, June.
    5. Magdalena Cornejo & Nicolás Merener & Ezequiel Merovich, 2024. "Extreme Dry Spells and Larger Storms in the U.S. Midwest Raise Crop Prices," Working Papers 303, Red Nacional de Investigadores en Economía (RedNIE).
    6. Gozde Guney Dogan & Efim Pelinovsky & Andrey Zaytsev & Ayse Duha Metin & Gulizar Ozyurt Tarakcioglu & Ahmet Cevdet Yalciner & Bora Yalciner & Ira Didenkulova, 2021. "Long wave generation and coastal amplification due to propagating atmospheric pressure disturbances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1195-1221, March.
    7. Jihwan Kim & Byoung-Ju Choi & Rachid Omira, 2022. "On the Greenspan resurgence of meteotsunamis in the Yellow Sea—insights from the newly discovered 11–12 June 2009 event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1323-1340, November.
    8. Li-Ching Lin & Chin H. Wu, 2021. "Unexpected meteotsunamis prior to Typhoon Wipha and Typhoon Neoguri," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1673-1686, March.
    9. Schreiner-McGraw, Adam P. & Baffaut, Claire, 2023. "Quantifying links between topsoil depth, plant water use, and yield in a rainfed maize field in the U. S. Midwest," Agricultural Water Management, Elsevier, vol. 290(C).
    10. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    11. Myung-Seok Kim & Hyunmin Eom & Sung Hyup You & Seung-Buhm Woo, 2021. "Real-time pressure disturbance monitoring system in the Yellow Sea: pilot test during the period of March to April 2018," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1703-1728, March.
    12. Michael Angove & Lewis Kozlosky & Philip Chu & Greg Dusek & Greg Mann & Eric Anderson & James Gridley & Diego Arcas & Vasily Titov & Marie Eble & Kimberly McMahon & Brian Hirsch & Walt Zaleski, 2021. "Addressing the meteotsunami risk in the united states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1467-1487, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:3:d:10.1007_s11069-021-05007-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.