IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v106y2021i2d10.1007_s11069-020-04245-9.html
   My bibliography  Save this article

Real-time pressure disturbance monitoring system in the Yellow Sea: pilot test during the period of March to April 2018

Author

Listed:
  • Myung-Seok Kim

    (Inha University)

  • Hyunmin Eom

    (Korea Meteorological Administration)

  • Sung Hyup You

    (Korea Meteorological Administration)

  • Seung-Buhm Woo

    (Inha University)

Abstract

Until now, the meteotsunamis reported in the Yellow Sea have been caused by sudden pressure disturbances; however, no suitable monitoring system has been established for these disturbances. With the maximum available pressure data based on 89 automatic weather stations (AWS), a real-time pressure disturbance monitoring system was developed for meteotsunami disaster prevention. When a pressure disturbance calculated from a rate of pressure change exceeds 1.2 hPa/10 min at a certain AWS, the monitoring system detects the occurrence of a pressure jump that can generate meteotsunamis in the Yellow Sea. The real-time monitoring system is operated by sending a short message service to hazard areas where destructive meteotsunamis are expected to occur by monitoring the intensity of the pressure disturbance and its propagation direction. During the pilot test from March to April 2018, the monitoring system detected four pressure jump events in total, two of which caused meteotsunamis. On the two meteotsunami event dates, the monitored pressure disturbances exceeded the intensity criteria for a common pressure jump and showed similar propagation patterns with the meteotsunamis. In particular, both meteotsunami events occurred only when the pressure jump, spatially characterized as a linear or bow type, propagated at least 12 m/s. Despite the limited number of events during the pilot test, this study provides an example of a meteotsunami-monitoring system and implications for additional pressure jump conditions favorable to meteotsunami occurrence.

Suggested Citation

  • Myung-Seok Kim & Hyunmin Eom & Sung Hyup You & Seung-Buhm Woo, 2021. "Real-time pressure disturbance monitoring system in the Yellow Sea: pilot test during the period of March to April 2018," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1703-1728, March.
  • Handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04245-9
    DOI: 10.1007/s11069-020-04245-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04245-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04245-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Rabinovich & Sebastian Monserrat, 1998. "Generation of Meteorological Tsunamis (Large Amplitude Seiches) Near the Balearic and Kuril Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 18(1), pages 27-55, July.
    2. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    3. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    4. Hilkka Pellikka & Jenni Rauhala & Kimmo Kahma & Tapani Stipa & Hanna Boman & Antti Kangas, 2014. "Recent observations of meteotsunamis on the Finnish coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 197-215, October.
    5. Charitha Pattiaratchi & E. Wijeratne, 2014. "Observations of meteorological tsunamis along the south-west Australian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 281-303, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivica Vilibić & Alexander B. Rabinovich & Eric J. Anderson, 2021. "Special issue on the global perspective on meteotsunami science: editorial," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1087-1104, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivica Vilibić & Cléa Denamiel & Petra Zemunik & Sebastian Monserrat, 2021. "The Mediterranean and Black Sea meteotsunamis: an overview," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1223-1267, March.
    2. Yang Wang & Xiaojing Niu & Zhengdong Yu & Xingyu Gao, 2021. "Numerical study on a possible cause of the ‘strange tide’ in the coastal area of Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1687-1701, March.
    3. Jadranka Šepić & Alexander Rabinovich, 2014. "Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 75-107, October.
    4. M. Solovieva & A. Rozhnoi & S. Shalimov & G. Shevchenko & P. F. Biagi & V. Fedun, 2021. "The lower ionosphere disturbances observed during the chain of the meteotsunamis in the Mediterranean Sea in June 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1383-1396, March.
    5. Emile A. Okal, 2021. "On the possibility of seismic recording of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1125-1147, March.
    6. Mohammad Heidarzadeh & Alexander B. Rabinovich, 2021. "Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1639-1672, March.
    7. Petra Zemunik & Angelo Bonanno & Salvatore Mazzola & Giovanni Giacalone & Ignazio Fontana & Simona Genovese & Gualtiero Basilone & Julio Candela & Jadranka Šepić & Ivica Vilibić & Salvatore Aronica, 2021. "Observing meteotsunamis (“Marrobbio”) on the southwestern coast of Sicily," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1337-1363, March.
    8. Michael Angove & Lewis Kozlosky & Philip Chu & Greg Dusek & Greg Mann & Eric Anderson & James Gridley & Diego Arcas & Vasily Titov & Marie Eble & Kimberly McMahon & Brian Hirsch & Walt Zaleski, 2021. "Addressing the meteotsunami risk in the united states," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1467-1487, March.
    9. Viacheslav K. Gusiakov, 2021. "Meteotsunamis at global scale: problems of event identification, parameterization and cataloguing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1105-1123, March.
    10. B. Mourre & A. Santana & A. Buils & L. Gautreau & M. Ličer & A. Jansà & B. Casas & B. Amengual & J. Tintoré, 2021. "On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1315-1336, March.
    11. Mohammad Hossein Kazeminezhad & Ivica Vilibić & Cléa Denamiel & Parvin Ghafarian & Samaneh Negah, 2021. "Weather radar and ancillary observations of the convective system causing the northern Persian Gulf meteotsunami on 19 March 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1747-1769, March.
    12. Rabinovich, M.I. & Varona, P. & Torres, J.J. & Huerta, R. & Abarbanel, H.D.I., 1999. "Slow dynamics and regularization phenomena in ensembles of chaotic neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 405-414.
    13. Emile Okal & Johan Visser & Coenraad Beer, 2014. "The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 251-268, October.
    14. N. Kurian & N. Nirupama & M. Baba & K. Thomas, 2009. "Coastal flooding due to synoptic scale, meso-scale and remote forcings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 259-273, February.
    15. Amir Salaree & Reza Mansouri & Emile A. Okal, 2018. "The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: field survey and simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1277-1307, February.
    16. Ivica Vilibić & Sebastian Monserrat & Alexander Rabinovich, 2014. "Meteorological tsunamis on the US East Coast and in other regions of the World Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 1-9, October.
    17. Eric J. Anderson & Greg E. Mann, 2021. "A high-amplitude atmospheric inertia–gravity wave-induced meteotsunami in Lake Michigan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1489-1501, March.
    18. Chenfu Huang & Eric Anderson & Yi Liu & Gangfeng Ma & Greg Mann & Pengfei Xue, 2022. "Evaluating essential processes and forecast requirements for meteotsunami-induced coastal flooding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1693-1718, February.
    19. Ye Yu & Jiang-lin Li & Jin Xie & Chuan Liu, 2016. "Climatic characteristics of thunderstorm days and the influence of atmospheric environment in Northwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 823-838, January.
    20. Jylhä, Kirsti & Kämäräinen, Matti & Fortelius, Carl & Gregow, Hilppa & Helander, Juho & Hyvärinen, Otto & Johansson, Milla & Karppinen, Ari & Korpinen, Anniina & Kouznetsov, Rostislav & Kurzeneva, Eka, 2018. "Recent meteorological and marine studies to support nuclear power plant safety in Finland," Energy, Elsevier, vol. 165(PA), pages 1102-1118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:106:y:2021:i:2:d:10.1007_s11069-020-04245-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.