IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i2d10.1007_s11069-021-04986-1.html
   My bibliography  Save this article

Bagging-based machine learning algorithms for landslide susceptibility modeling

Author

Listed:
  • Tingyu Zhang

    (The Ministry of Natural Resources
    Shaanxi Provincial Land Engineering Construction Group Co., Ltd.)

  • Quan Fu

    (Shaanxi Provincial Land Engineering Construction Group Land Survey Planning and Design Institute Co., Ltd.)

  • Hao Wang

    (Hanzhong Branch of Shaanxi Land Engineering Construction Group Co., Ltd.)

  • Fangfang Liu

    (Shaanxi Provincial Land Engineering Construction Group Land Survey Planning and Design Institute Co., Ltd.)

  • Huanyuan Wang

    (The Ministry of Natural Resources
    Shaanxi Provincial Land Engineering Construction Group Co., Ltd.)

  • Ling Han

    (Chang’an University)

Abstract

Landslide hazards have attracted increasing public attention over the past decades due to a series of catastrophic consequences of landslide occurrence. Thus, the mitigation and prevention of landslide hazards have been the topical issues. Thereinto, numerous research achievements on landslide susceptibility assessment have been springing up in recent years. In this paper, four benchmark models including best-first decision tree (BFTree), functional tree, support vector machine and classification regression tree (CART) and were integrated with bagging strategy. Then, these bagging-based models were applied to map regional landslide susceptibility in Jiange County, Sichuan Province, China. Fifteen conditioning factors were employed in establishing landslide susceptibility models, respectively, slope aspect, slope angle, elevation, plan curvature, profile curvature, TWI, SPI, STI, lithology, soil, land use, NDVI, distance to rivers, distance to roads and distance to lineaments. Then utilize correlation attribute evaluation method to weigh the contribution of each factor. Finally, the comprehensive performance of various bagging-based models and corresponding benchmark models was evaluated and systematically compared applying receiver operating characteristic curve and area under curve (AUC) values. Results demonstrated that bagging-based ensemble models significantly outperformed their corresponding benchmark models with validation dataset. Among them the Bag-CART model has the highest AUC value of 0.874; however, the AUC value of CART model is only 0.766, which reflected satisfying predictive capacity of integrated models in some degree. The achievements obtained in this study have some reference values for landslides prevention and land resource planning in Jiange County.

Suggested Citation

  • Tingyu Zhang & Quan Fu & Hao Wang & Fangfang Liu & Huanyuan Wang & Ling Han, 2022. "Bagging-based machine learning algorithms for landslide susceptibility modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 823-846, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04986-1
    DOI: 10.1007/s11069-021-04986-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04986-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04986-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    2. Min-Yuan Cheng & Nhat-Duc Hoang, 2015. "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1961-1978, September.
    3. Iuliana Armaş, 2012. "Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 937-950, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitikidou, Kyriaki & Petrou, Petros & Milios, Elias, 2012. "Dominant height growth and site index curves for Calabrian pine (Pinus brutia Ten.) in central Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1323-1329.
    2. Eslam Mohammed Abdelkader & Abobakr Al-Sakkaf & Ghasan Alfalah & Nehal Elshaboury, 2022. "Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    3. Rana Muhammad Adnan Ikram & Imran Khan & Hossein Moayedi & Atefeh Ahmadi Dehrashid & Ismail Elkhrachy & Binh Nguyen Le, 2024. "Novel evolutionary-optimized neural network for predicting landslide susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17687-17719, July.
    4. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
    5. Confalonieri, R. & Bregaglio, S. & Acutis, M., 2012. "Quantifying plasticity in simulation models," Ecological Modelling, Elsevier, vol. 225(C), pages 159-166.
    6. Huseyin Ozturk & Ersin Namli & Halil Ibrahim Erdal, 2016. "Reducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better?," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 59-81, June.
    7. Pecchi, Matteo & Marchi, Maurizio & Burton, Vanessa & Giannetti, Francesca & Moriondo, Marco & Bernetti, Iacopo & Bindi, Marco & Chirici, Gherardo, 2019. "Species distribution modelling to support forest management. A literature review," Ecological Modelling, Elsevier, vol. 411(C).
    8. Hamid Reza Pourghasemi & Soheila Pouyan & Mojgan Bordbar & Foroogh Golkar & John J. Clague, 2023. "Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3797-3816, April.
    9. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    10. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    11. Alexandra M. Thorn & Jonathan R. Thompson & Joshua S. Plisinski, 2016. "Patterns and Predictors of Recent Forest Conversion in New England," Land, MDPI, vol. 5(3), pages 1-17, September.
    12. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    13. Kint, V. & Aertsen, W. & Fyllas, N.M. & Trabucco, A. & Janssen, E. & Özkan, K. & Muys, B., 2014. "Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey," Ecological Modelling, Elsevier, vol. 286(C), pages 53-65.
    14. Quynh Duy Bui & Hang Ha & Dong Thanh Khuc & Dinh Quoc Nguyen & Jason von Meding & Lam Phuong Nguyen & Chinh Luu, 2023. "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2283-2309, March.
    15. Yukun Yang & Wei Zhou & Izhar Mithal Jiskani & Xiang Lu & Zhiming Wang & Boyu Luan, 2023. "Slope Stability Prediction Method Based on Intelligent Optimization and Machine Learning Algorithms," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    16. Aleksandr Lebedev & Valery Kuzmichev, 2020. "Verification of two- and three-parameter simple height-diameter models for birch in the European part of Russia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(9), pages 375-382.
    17. Romulus Costache & Alireza Arabameri & Iulia Costache & Anca Crăciun & Binh Thai Pham, 2022. "New Machine Learning Ensemble for Flood Susceptibility Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4765-4783, September.
    18. Taskin Kavzoglu & Emrehan Kutlug Sahin & Ismail Colkesen, 2015. "An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 471-496, March.
    19. Hillary Mugiyo & Vimbayi G. P. Chimonyo & Mbulisi Sibanda & Richard Kunz & Cecilia R. Masemola & Albert T. Modi & Tafadzwanashe Mabhaudhi, 2021. "Evaluation of Land Suitability Methods with Reference to Neglected and Underutilised Crop Species: A Scoping Review," Land, MDPI, vol. 10(2), pages 1-24, January.
    20. Díaz-Yáñez, Olalla & Mola-Yudego, Blas & González-Olabarria, José Ramón, 2019. "Modelling damage occurrence by snow and wind in forest ecosystems," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04986-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.