IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v63y2012i2p479-498.html
   My bibliography  Save this article

Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal

Author

Listed:
  • Prabin Kayastha
  • Megh Dhital
  • Florimond Smedt

Abstract

Mountainous areas in Nepal are prone to landslides, resulting in an enormous loss of life and property every year. As a first step towards mitigating or controlling such problems, it is necessary to prepare landslide susceptibility maps. Various methodologies have been proposed for landslide susceptibility mapping. This study applies the weight of evidence method to the Tinau watershed in west Nepal. A landslide susceptibility map is prepared on the basis of field observations and available data of geology, land use, topography and hydrology. Predicted susceptibility levels are found to be in good agreement with the locations of past landslides. The results show that about 30 % of the area is highly susceptible to landsliding. The present results provide useful information to the authorities concerning the landslide susceptibility zones and possible improvements for disaster management activities and sustainable development. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Prabin Kayastha & Megh Dhital & Florimond Smedt, 2012. "Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 479-498, September.
  • Handle: RePEc:spr:nathaz:v:63:y:2012:i:2:p:479-498
    DOI: 10.1007/s11069-012-0163-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0163-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0163-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pantha, Bhoj Raj & Yatabe, Ryuichi & Bhandary, Netra Prakash, 2010. "GIS-based highway maintenance prioritization model: an integrated approach for highway maintenance in Nepal mountains," Journal of Transport Geography, Elsevier, vol. 18(3), pages 426-433.
    2. Motilal Ghimire, 2011. "Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 299-320, January.
    3. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quynh Duy Bui & Hang Ha & Dong Thanh Khuc & Dinh Quoc Nguyen & Jason von Meding & Lam Phuong Nguyen & Chinh Luu, 2023. "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2283-2309, March.
    2. Richard Mind’je & Lanhai Li & Jean Baptiste Nsengiyumva & Christophe Mupenzi & Enan Muhire Nyesheja & Patient Mindje Kayumba & Aboubakar Gasirabo & Egide Hakorimana, 2020. "Landslide susceptibility and influencing factors analysis in Rwanda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7985-8012, December.
    3. Silvana Moragues & María Gabriela Lenzano & Mario Lanfri & Stella Moreiras & Esteban Lannutti & Luis Lenzano, 2021. "Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 915-941, January.
    4. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    5. Javeria Saleem & Sheikh Saeed Ahmad & Amna Butt, 2020. "Hazard risk assessment of landslide-prone sub-Himalayan region by employing geospatial modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1497-1514, July.
    6. Majid Roodposhti & Saeed Rahimi & Mansour Beglou, 2014. "PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 77-95, August.
    7. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
    8. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    9. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    10. Athanasios V. Argyriou & Christos Polykretis & Richard M. Teeuw & Nikos Papadopoulos, 2022. "Geoinformatic Analysis of Rainfall-Triggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping," Sustainability, MDPI, vol. 14(7), pages 1-25, March.
    11. Nitin L. Rane & Geetha K. Jayaraj, 2022. "Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2315-2344, February.
    12. Ganapathy Ganapathy & Ajay Rajawat, 2015. "Use of hazard and vulnerability maps for landslide planning scenarios: a case study of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 305-316, May.
    13. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    2. Purna Bahadur Thapa & Saurav Lamichhane & Khagendra Prasad Joshi & Aayoush Raj Regmi & Divya Bhattarai & Hari Adhikari, 2023. "Landslide Susceptibility Assessment in Nepal’s Chure Region: A Geospatial Analysis," Land, MDPI, vol. 12(12), pages 1-20, December.
    3. Takumi Asada & Tran Vinh Ha & Mikiharu Arimura & Shuichi Kameyama, 2022. "A Novel Approach for Urban Road Network Maintenance Plans Using Spatial Autocorrelation Analysis and Roadside Conditions: A Case Study of Muroran City, Japan," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    4. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    5. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    6. Chen, Cong & Zhang, Su & Zhang, Guohui & Bogus, Susan M. & Valentin, Vanessa, 2014. "Discovering temporal and spatial patterns and characteristics of pavement distress condition data on major corridors in New Mexico," Journal of Transport Geography, Elsevier, vol. 38(C), pages 148-158.
    7. K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
    8. Danang Hadmoko & Franck Lavigne & Junun Sartohadi & Pramono Hadi & Winaryo, 2010. "Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 623-642, September.
    9. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    10. Sohan Kumar Ghimire & Daisuke Higaki & Tara Prasad Bhattarai, 2013. "Estimation of Soil Erosion Rates and Eroded Sediment in a Degraded Catchment of the Siwalik Hills, Nepal," Land, MDPI, vol. 2(3), pages 1-22, July.
    11. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    12. Paola Gattinoni, 2009. "Parametrical landslide modeling for the hydrogeological susceptibility assessment: from the Crati Valley to the Cavallerizzo landslide (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 161-178, July.
    13. Gao Hua-xi & Yin Kun-long, 2014. "Study on spatial prediction and time forecast of landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1735-1748, February.
    14. Danang Sri Hadmoko & Franck Lavigne & Guruh Samodra, 2017. "Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 437-468, May.
    15. Ginés Suárez & María José Domínguez-Cuesta, 2021. "Improving landslide susceptibility predictive power through colluvium mapping in Tegucigalpa, Honduras," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 47-66, January.
    16. Uzodigwe Emmanuel Nnanwuba & Shengwu Qin & Oluwafemi Adewole Adeyeye & Ndichie Chinemelu Cosmas & Jingyu Yao & Shuangshuang Qiao & Sun Jingbo & Ekene Mathew Egwuonwu, 2022. "Prediction of Spatial Likelihood of Shallow Landslide Using GIS-Based Machine Learning in Awgu, Southeast/Nigeria," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    17. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    18. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    19. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    20. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:63:y:2012:i:2:p:479-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.