The influence of cartographic representation on landslide susceptibility models: empirical evidence from a Brazilian UNESCO world heritage site
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-024-06576-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
- Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yanrong Liu & Zhongqiu Meng & Lei Zhu & Di Hu & Handong He, 2023. "Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
- Yong Ye & Wei Chen & Guirong Wang & Weifeng Xue, 2022. "Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5461-5494, November.
- Manish Singh Rana & Chandan Mahanta, 2023. "Spatial prediction of flash flood susceptible areas using novel ensemble of bivariate statistics and machine learning techniques for ungauged region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 947-969, January.
- Heni Masruroh & Soemarno Soemarno & Syahrul Kurniawan & Amin Setyo Leksono, 2023. "A Spatial Model of Landslides with A Micro-Topography and Vegetation Approach for Sustainable Land Management in the Volcanic Area," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
- Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
- Katleho Makatjane & Ntebogang Moroke, 2021. "Predicting Extreme Daily Regime Shifts in Financial Time Series Exchange/Johannesburg Stock Exchange—All Share Index," IJFS, MDPI, vol. 9(2), pages 1-18, March.
- Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
- Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.
- Michele Placido Antonio Gatto & Salvatore Misiano & Lorella Montrasio, 2022. "On the Use of MATLAB to Import and Manipulate Geographic Data: A Tool for Landslide Susceptibility Assessment," Geographies, MDPI, vol. 2(2), pages 1-13, June.
- Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
More about this item
Keywords
Landslide; Susceptibility mapping; Natural hazards; Cartography representation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:11:d:10.1007_s11069-024-06576-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.