IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i2d10.1007_s11069-020-04385-y.html
   My bibliography  Save this article

Multi-hazard climate risk projections for the United States

Author

Listed:
  • Binita KC

    (Oak Ridge National Laboratory
    ADNET Systems Inc/ NASA Goddard Space Flight Center)

  • J. M. Shepherd

    (The University of Georgia)

  • Anthony W. King

    (Oak Ridge National Laboratory)

  • Cassandra Johnson Gaither

    (USDA Forest Service)

Abstract

Climate risk is a consequence of climate hazards, exposure, and the vulnerability (IPCC 2014). Here, we assess future (2040–2049) climate risk for the entire contiguous US at the county level with a novel climate risk index integrating multiple hazards, exposures and vulnerabilities. Future, weather and climate hazards are characterized as frequency of heat wave, cold spells, dryer, and heavy precipitation events along with anomalies of temperature and precipitation using high resolution (4 km) downscaled climate projections. Exposure is characterized by projections of population, infrastructure, and built surfaces prone to multiple hazards including sea level rise and storm surges. Vulnerability is characterized by projections of demographic groups most sensitive to climate hazards. We found Florida, California, the central Gulf Coast, and North Atlantic at high climate risk in the future. However, the contributions to this risk vary regionally. Florida is projected to be equally hard hit by the three components of climate risk. The coastal counties in the Gulf states of Louisiana, Texas, Mississippi and Alabama are at high climate risk due to high exposure and hazard. High exposure and vulnerability drive high climate risk in California counties. This approach can guide planners in targeting counties at most risk and where adaptation strategies to reduce exposure or protect vulnerable populations might be best applied.

Suggested Citation

  • Binita KC & J. M. Shepherd & Anthony W. King & Cassandra Johnson Gaither, 2021. "Multi-hazard climate risk projections for the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1963-1976, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04385-y
    DOI: 10.1007/s11069-020-04385-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04385-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04385-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathew E. Hauer & Jason M. Evans & Deepak R. Mishra, 2016. "Millions projected to be at risk from sea-level rise in the continental United States," Nature Climate Change, Nature, vol. 6(7), pages 691-695, July.
    2. Livia Rasche & Lorenz Fahse & Harald Bugmann, 2013. "Key factors affecting the future provision of tree-based forest ecosystem goods and services," Climatic Change, Springer, vol. 118(3), pages 579-593, June.
    3. Bryan Jones & Brian C. O’Neill & Larry McDaniel & Seth McGinnis & Linda O. Mearns & Claudia Tebaldi, 2015. "Future population exposure to US heat extremes," Nature Climate Change, Nature, vol. 5(7), pages 652-655, July.
    4. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    5. Sarahi Nunez & Eric Arets & Rob Alkemade & Caspar Verwer & Rik Leemans, 2019. "Assessing the impacts of climate change on biodiversity: is below 2 °C enough?," Climatic Change, Springer, vol. 154(3), pages 351-365, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armand Landreau & Sirkku Juhola & Alexandra Jurgilevich & Aleksi Räsänen, 2021. "Combining socio-economic and climate projections to assess heat risk," Climatic Change, Springer, vol. 167(1), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Marandi & Kelly Leilani Main, 2021. "Vulnerable City, recipient city, or climate destination? Towards a typology of domestic climate migration impacts in US cities," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 465-480, September.
    2. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    3. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    4. Seth Schindler & Jonathan Silver, 2019. "Florida in the Global South: How Eurocentrism Obscures Global Urban Challenges—and What We Can Do about It," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 43(4), pages 794-805, July.
    5. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    6. Sri Hasnawati & Mustofa Usman & Ahmad Faisol & Faiz A. M. Elfaki, 2023. "Analysis and Modeling Gross Domestic Product, Carbon Dioxide Emission, Population Growth, and Life Expectancy at Birth: Case Study in Qatar," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 467-483, March.
    7. Georgia Warren-Myers & Gideon Aschwanden & Franz Fuerst & Andy Krause, 2018. "Estimating the Potential Risks of Sea Level Rise for Public and Private Property Ownership, Occupation and Management," Risks, MDPI, vol. 6(2), pages 1-21, April.
    8. Kelsea Best & Qian He & Allison C. Reilly & Deb A. Niemeier & Mitchell Anderson & Tom Logan, 2023. "Demographics and risk of isolation due to sea level rise in the United States," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    10. Julie Milovanovic & Tripp Shealy & Leidy Klotz & Eric J. Johnson & Elke U. Weber, 2022. "Pictures Matter: How Images of Projected Sea-Level Rise Shape Long-Term Sustainable Design Decisions for Infrastructure Systems," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
    11. Celso Brunetti & Matteo Crosignani & Benjamin Dennis & Gurubala Kotta & Donald P. Morgan & Chaehee Shin & Ilknur Zer, 2024. "Climate-Related Financial Stability Risks for the United States: Methods and Applications," Economic Policy Review, Federal Reserve Bank of New York, vol. 30(1), pages 1-37, October.
    12. David Rodziewicz & Christopher J. Amante & Jacob Dice & Eugene Wahl, 2022. "Housing market impairment from future sea-level rise inundation," Environment Systems and Decisions, Springer, vol. 42(4), pages 637-656, December.
    13. Salvi Asefi-Najafabady & Karen L Vandecar & Anton Seimon & Peter Lawrence & Deborah Lawrence, 2018. "Climate change, population, and poverty: vulnerability and exposure to heat stress in countries bordering the Great Lakes of Africa," Climatic Change, Springer, vol. 148(4), pages 561-573, June.
    14. R. Dean Hardy & Bryan L. Nuse, 2016. "Global sea-level rise: weighing country responsibility and risk," Climatic Change, Springer, vol. 137(3), pages 333-345, August.
    15. Huber, Nica & Bugmann, Harald & Lafond, Valentine, 2018. "Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions," Ecological Modelling, Elsevier, vol. 368(C), pages 377-390.
    16. Anamaria Bukvic, 2019. "Visualizing the Possibility of Relocation: Coastal Relocation Leaf," Social Sciences, MDPI, vol. 8(6), pages 1-12, June.
    17. K. Shuvo Bakar & Huidong Jin, 2018. "Spatio-temporal quantitative links between climatic extremes and population flows: a case study in the Murray-Darling Basin, Australia," Climatic Change, Springer, vol. 148(1), pages 139-153, May.
    18. Andrew L. Dannenberg & Howard Frumkin & Jeremy J. Hess & Kristie L. Ebi, 2019. "Managed retreat as a strategy for climate change adaptation in small communities: public health implications," Climatic Change, Springer, vol. 153(1), pages 1-14, March.
    19. Jesse M. Keenan & Jacob T. Bradt, 2020. "Underwaterwriting: from theory to empiricism in regional mortgage markets in the U.S," Climatic Change, Springer, vol. 162(4), pages 2043-2067, October.
    20. Christopher J. Amante & Jacob Dice & David Rodziewicz & Eugene Wahl, 2020. "Housing Market Value Impairment from Future Sea-level Rise Inundation," Research Working Paper RWP 20-05, Federal Reserve Bank of Kansas City.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04385-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.