Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ecolmodel.2017.12.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rasche, Livia & Fahse, Lorenz & Zingg, Andreas & Bugmann, Harald, 2012. "Enhancing gap model accuracy by modeling dynamic height growth and dynamic maximum tree height," Ecological Modelling, Elsevier, vol. 232(C), pages 133-143.
- Manusch, Corina & Bugmann, Harald & Wolf, Annett, 2014. "Sensitivity of simulated productivity to soil characteristics and plant water uptake along drought gradients in the Swiss Alps," Ecological Modelling, Elsevier, vol. 282(C), pages 25-34.
- Courbaud, B. & Lafond, V. & Lagarrigues, G. & Vieilledent, G. & Cordonnier, T. & Jabot, F. & de Coligny, F., 2015. "Applying ecological model evaludation: Lessons learned with the forest dynamics model Samsara2," Ecological Modelling, Elsevier, vol. 314(C), pages 1-14.
- Christoph Schwörer & David M. Fisher & Daniel G. Gavin & Christian Temperli & Patrick J. Bartlein, 2016. "Modeling postglacial vegetation dynamics of temperate forests on the Olympic Peninsula (WA, USA) with special regard to snowpack," Climatic Change, Springer, vol. 137(3), pages 379-394, August.
- Xiuchen Wu & Hongyan Liu & Dali Guo & Oleg A Anenkhonov & Natalya K Badmaeva & Denis V Sandanov, 2012. "Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
- Augusiak, Jacqueline & Van den Brink, Paul J. & Grimm, Volker, 2014. "Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach," Ecological Modelling, Elsevier, vol. 280(C), pages 117-128.
- Marc Hanewinkel & Dominik A. Cullmann & Mart-Jan Schelhaas & Gert-Jan Nabuurs & Niklaus E. Zimmermann, 2013. "Climate change may cause severe loss in the economic value of European forest land," Nature Climate Change, Nature, vol. 3(3), pages 203-207, March.
- Livia Rasche & Lorenz Fahse & Harald Bugmann, 2013. "Key factors affecting the future provision of tree-based forest ecosystem goods and services," Climatic Change, Springer, vol. 118(3), pages 579-593, June.
- Ben D. MacArthur & Richard O. C. Oreffo, 2005. "Bridging the gap," Nature, Nature, vol. 433(7021), pages 19-19, January.
- Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
- Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
- Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
- Wramneby, Anna & Smith, Benjamin & Zaehle, Sönke & Sykes, Martin T., 2008. "Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes," Ecological Modelling, Elsevier, vol. 216(3), pages 277-290.
- Wang, Fugui & Mladenoff, David J. & Forrester, Jodi A. & Keough, Cindy & Parton, William J., 2013. "Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy," Ecological Modelling, Elsevier, vol. 259(C), pages 16-23.
- Valerie A. Barber & Glenn Patrick Juday & Bruce P. Finney, 2000. "Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress," Nature, Nature, vol. 405(6787), pages 668-673, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
- Schmid, Ueli & Frehner, Monika & Glatthorn, Jonas & Bugmann, Harald, 2023. "ProForM: A simulation model for the management of mountain protection forests," Ecological Modelling, Elsevier, vol. 478(C).
- Forrester, David I. & England, Jacqueline R. & Paul, Keryn I. & Roxburgh, Stephen H., 2024. "Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia's forest carbon stocks," Ecological Modelling, Elsevier, vol. 489(C).
- Gauzere, Julie & Lucas, Camille & Ronce, Ophélie & Davi, Hendrik & Chuine, Isabelle, 2019. "Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate," Ecological Modelling, Elsevier, vol. 411(C).
- Zamora-Pereira, Juan Carlos & Hanewinkel, Marc & Yousefpour, Rasoul, 2023. "Robust management strategies promoting ecological resilience and economic efficiency of a mixed conifer-broadleaf forest in Southwest Germany under the risk of severe drought," Ecological Economics, Elsevier, vol. 209(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gauzere, Julie & Lucas, Camille & Ronce, Ophélie & Davi, Hendrik & Chuine, Isabelle, 2019. "Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate," Ecological Modelling, Elsevier, vol. 411(C).
- Morris, David J. & Speirs, Douglas C. & Cameron, Angus I. & Heath, Michael R., 2014. "Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos," Ecological Modelling, Elsevier, vol. 273(C), pages 251-263.
- Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
- Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
- Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
- Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
- Christopher P. O. Reyer & Michael Flechsig & Petra Lasch-Born & Marcel Oijen, 2016. "Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity," Climatic Change, Springer, vol. 137(3), pages 395-409, August.
- Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
- Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
- Courbaud, B. & Lafond, V. & Lagarrigues, G. & Vieilledent, G. & Cordonnier, T. & Jabot, F. & de Coligny, F., 2015. "Applying ecological model evaludation: Lessons learned with the forest dynamics model Samsara2," Ecological Modelling, Elsevier, vol. 314(C), pages 1-14.
- Song, Xiaodong & Bryan, Brett A. & Paul, Keryn I. & Zhao, Gang, 2012. "Variance-based sensitivity analysis of a forest growth model," Ecological Modelling, Elsevier, vol. 247(C), pages 135-143.
- Myrgiotis, Vasileios & Rees, Robert M. & Topp, Cairistiona F.E. & Williams, Mathew, 2018. "A systematic approach to identifying key parameters and processes in agroecosystem models," Ecological Modelling, Elsevier, vol. 368(C), pages 344-356.
- Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
- Brecka, Aaron F.J. & Shahi, Chander & Chen, Han Y.H., 2018. "Climate change impacts on boreal forest timber supply," Forest Policy and Economics, Elsevier, vol. 92(C), pages 11-21.
- Irauschek, Florian & Barka, Ivan & Bugmann, Harald & Courbaud, Benoit & Elkin, Che & Hlásny, Tomáš & Klopcic, Matija & Mina, Marco & Rammer, Werner & Lexer, Manfred J, 2021. "Evaluating five forest models using multi-decadal inventory data from mountain forests," Ecological Modelling, Elsevier, vol. 445(C).
- Lopez de Gamiz-Zearra, A. & Hansen, C. & Corrales, X. & Andonegi, E., 2024. "Increasing the reliability of the Bay of Biscay Atlantis model: A sensitivity analysis to parameters perturbations using a Morris screening approach," Ecological Modelling, Elsevier, vol. 488(C).
- Langston, Amy K. & Kaplan, David A., 2020. "Modelling the effects of climate, predation, and dispersal on the poleward range expansion of black mangrove (Avicennia germinans)," Ecological Modelling, Elsevier, vol. 434(C).
- Chunyang Liu & Chao Liu & Qianqian Sun & Tianyang Chen & Ya Fan, 2022. "Vegetation Dynamics and Climate from A Perspective of Lag-Effect: A Study Case in Loess Plateau, China," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
- Cordonnier, Thomas & Smadi, Charline & Kunstler, Georges & Courbaud, Benoît, 2019. "Asymmetric competition, ontogenetic growth and size inequality drive the difference in productivity between two-strata and one-stratum forest stands," Theoretical Population Biology, Elsevier, vol. 130(C), pages 83-93.
- Vanessa Taylor & Sarah Ashelford & Patricia Fell & Penelope J Goacher, 2015. "Biosciences in nurse education: is the curriculum fit for practice? Lecturers' views and recommendations from across the UK," Journal of Clinical Nursing, John Wiley & Sons, vol. 24(19-20), pages 2797-2806, October.
More about this item
Keywords
Europe; ForClim; Forest gap model; Morris screening method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:368:y:2018:i:c:p:377-390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.