IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i1d10.1007_s11069-020-04039-z.html
   My bibliography  Save this article

Activity patterns and controlling factors of debris flows in the Upper Salween Alpine Valley

Author

Listed:
  • Jiangcheng Huang

    (Institute of International Rivers and Eco-Security, Yunnan University
    Yunnan Key Laboratory for International Rivers and Transboundary Eco-Security)

  • Huijuan Xu

    (Institute of International Rivers and Eco-Security, Yunnan University
    Yunnan Key Laboratory for International Rivers and Transboundary Eco-Security)

  • Xingwu Duan

    (Institute of International Rivers and Eco-Security, Yunnan University
    Yunnan Key Laboratory for International Rivers and Transboundary Eco-Security)

  • Xu Li

    (Institute of International Rivers and Eco-Security, Yunnan University
    Yunnan Key Laboratory for International Rivers and Transboundary Eco-Security)

  • Peijia Wang

    (Institute of International Rivers and Eco-Security, Yunnan University
    Yunnan Key Laboratory for International Rivers and Transboundary Eco-Security)

Abstract

The frequency of debris flows in mountainous areas has increased in recent years, threatening sustainable development of mountainous communities. The Upper Salween Alpine Valley (USAV) experiences the most serious debris flow disasters in China. However, activity patterns and formation mechanisms of debris flow in this area are still unclear. We analyzed debris flow activity patterns and identified their key controlling factors in the USAV based on 66-year historical data, field records, remote sensing images, and geology, gravity, and precipitation characteristics. The results showed that (1) 200 contemporary debris flow gullies were distributed with a linear density of 0.64 gully/km. Twenty-four large-scale debris flow disasters occurred in the past 66 years; (2) the activity patterns of debris flow in the USAV were characterized by double rain season, nocturnal, high concealment, low frequency, and strong destructive force; (3) the USAV was a debris-flow-prone area with strong precipitation, strong gravity, and moderate geology driving forces. It belongs to loose material-controlled debris flow region. Our findings could contribute to the understanding of formation mechanisms of debris flows, and further improve prevention and mitigation of debris flow disasters in the USAV.

Suggested Citation

  • Jiangcheng Huang & Huijuan Xu & Xingwu Duan & Xu Li & Peijia Wang, 2020. "Activity patterns and controlling factors of debris flows in the Upper Salween Alpine Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1367-1383, August.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04039-z
    DOI: 10.1007/s11069-020-04039-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04039-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04039-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    2. Eric Neumayer & Fabian Barthel, 2010. "Normalizing economic loss from natural disasters: a global analysis," GRI Working Papers 31, Grantham Research Institute on Climate Change and the Environment.
    3. Markus Stoffel & Thomas Mendlik & Michelle Schneuwly-Bollschweiler & Andreas Gobiet, 2014. "Possible impacts of climate change on debris-flow activity in the Swiss Alps," Climatic Change, Springer, vol. 122(1), pages 141-155, January.
    4. M. Jakob & D. Stein & M. Ulmi, 2012. "Vulnerability of buildings to debris flow impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 241-261, January.
    5. Thea Turkington & Alexandre Remaître & Janneke Ettema & Haydar Hussin & Cees Westen, 2016. "Assessing debris flow activity in a changing climate," Climatic Change, Springer, vol. 137(1), pages 293-305, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinwen Li & Yafeng Lu & Yukuan Wang & Pei Xu, 2019. "Debris Flow Risk Assessment Based on a Water–Soil Process Model at the Watershed Scale Under Climate Change: A Case Study in a Debris-Flow-Prone Area of Southwest China," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    2. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    3. Jenni Dinger & Michael Conger & David Hekman & Carla Bustamante, 2020. "Somebody That I Used to Know: The Immediate and Long-Term Effects of Social Identity in Post-disaster Business Communities," Journal of Business Ethics, Springer, vol. 166(1), pages 115-141, September.
    4. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    5. Michalis Diakakis & Spyridon Mavroulis & Emmanuel Vassilakis & Vassiliki Chalvatzi, 2023. "Exploring the Application of a Debris Flow Likelihood Regression Model in Mediterranean Post-Fire Environments, Using Field Observations-Based Validation," Land, MDPI, vol. 12(3), pages 1-18, February.
    6. Saud Alshehri & Yacine Rezgui & Haijiang Li, 2015. "Delphi-based consensus study into a framework of community resilience to disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2221-2245, February.
    7. Matteo Coronese & Francesco Lamperti & Francesca Chiaromonte & Andrea Roventini, 2018. "Natural Disaster Risk and the Distributional Dynamics of Damages," LEM Papers Series 2018/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Ranger, Nicola & Niehörster, Falk, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," LSE Research Online Documents on Economics 37587, London School of Economics and Political Science, LSE Library.
    9. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    10. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    11. T. Zieher & G. Gallotti & G. Rianna & A. Reder & J. Pfeiffer, 2023. "Exploring the effects of climate change on the water balance of a continuously moving deep-seated landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 357-387, January.
    12. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    13. R. Vázquez & J. L. Macías & J. Alcalá-Reygosa & J. L. Arce & A. Jiménez-Haro & S. Fernández & T. Carlón & R. Saucedo & J. M. Sánchez-Núñez, 2022. "Numerical modeling and hazard implications of landslides at the Ardillas Volcanic Dome (Tacaná Volcanic Complex, Mexico-Guatemala)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1305-1333, September.
    14. Zhifei Deng & Jifu Liu & Lanlan Guo & Jiaoyang Li & Junming Li & Yiru Jia, 2021. "Pure risk premium rating of debris flows based on a dynamic run-out model: a case study in Anzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 235-253, March.
    15. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    16. Samba Diop & Simplice A. Asongu & Vanessa S. Tchamyou, 2021. "Mitigating the Macroeconomic Impact of Severe Natural Disasters in Africa: Policy Synergies," Working Papers of the African Governance and Development Institute. 21/094, African Governance and Development Institute..
    17. Trevor Maynard & Nicola Ranger, 2011. "What role for �long-term� insurance in adaptation? An analysis of the prospects for and pricing of multi-year insurance contracts," GRI Working Papers 62, Grantham Research Institute on Climate Change and the Environment.
    18. Wolfgang Kron, 2013. "Coasts: the high-risk areas of the world," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1363-1382, April.
    19. Stephane Hallegatte, 2017. "A Normative Exploration of the Link Between Development, Economic Growth, and Natural Risk," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 5-31, June.
    20. Xin He & Jidong Wu & Cailin Wang & Mengqi Ye, 2018. "Historical Earthquakes and Their Socioeconomic Consequences in China: 1950–2017," IJERPH, MDPI, vol. 15(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:1:d:10.1007_s11069-020-04039-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.