IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v36y2023i3d10.1007_s13563-022-00361-z.html
   My bibliography  Save this article

Appraising the value of compositional information and its implications to scrap-based production of steel

Author

Listed:
  • Reinol Josef Compañero

    (KTH Royal Institute of Technology)

  • Andreas Feldmann

    (KTH Royal Institute of Technology)

  • Peter Samuelsson

    (KTH Royal Institute of Technology)

  • Anders Tilliander

    (KTH Royal Institute of Technology)

  • Pär Göran Jönsson

    (KTH Royal Institute of Technology)

  • Rutger Gyllenram

    (Kobolde & Partners AB)

Abstract

The current nature of steel design and production is a response to meet increasingly demanding applications but without much consideration of end-of-life scenarios. The scrap handling infrastructure, particularly the characterization and sorting, is unable to match the complexity of scrapped products. This is manifested in problems of intermixing and contamination in the scrap flows, especially for obsolete scrap. Also, the segmentation of scrap classes in standards with respect to chemical compositions is based on tolerance ranges. Thus, variation in scrap composition exists even within the same scrap type. This study applies the concept of expected value of perfect information (EPVI) to the context of steel recycling. More specifically, it sets out to examine the difference between having partial and full information on scrap composition by using a raw material optimization software. Three different scenarios with different constraints were used to appraise this difference in terms of production and excess costs. With access to perfect information, production costs decreased by 8–10%, and excess costs became negligible. Overall, comparing the respective results gave meaningful insights on the value of reestablishing the compositional information of scrap at the end of its use phase. Furthermore, the results provided relevant findings and contribute to the ongoing discussions on the seemingly disparate prioritization of economic and environmental incentives with respect to the recycling of steel.

Suggested Citation

  • Reinol Josef Compañero & Andreas Feldmann & Peter Samuelsson & Anders Tilliander & Pär Göran Jönsson & Rutger Gyllenram, 2023. "Appraising the value of compositional information and its implications to scrap-based production of steel," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 463-480, September.
  • Handle: RePEc:spr:minecn:v:36:y:2023:i:3:d:10.1007_s13563-022-00361-z
    DOI: 10.1007/s13563-022-00361-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-022-00361-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-022-00361-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Avriel & A. C. Williams, 1970. "The Value of Information and Stochastic Programming," Operations Research, INFORMS, vol. 18(5), pages 947-954, October.
    2. Rong, Aiying & Lahdelma, Risto, 2008. "Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production," European Journal of Operational Research, Elsevier, vol. 186(3), pages 953-964, May.
    3. Diener, Derek L. & Tillman, Anne-Marie, 2015. "Component end-of-life management: Exploring opportunities and related benefits of remanufacturing and functional recycling," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 80-93.
    4. Weston Baxter & Marco Aurisicchio & Peter Childs, 2017. "Contaminated Interaction: Another Barrier to Circular Material Flows," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 507-516, June.
    5. SakallI, Ümit Sami & Baykoç, Ömer Faruk, 2011. "An optimization approach for brass casting blending problem under aletory and epistemic uncertainties," International Journal of Production Economics, Elsevier, vol. 133(2), pages 708-718, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. German Arana‐Landin & Waleska Sigüenza & Beñat Landeta‐Manzano & Iker Laskurain‐Iturbe, 2024. "Circular economy: On the road to ISO 59000 family of standards," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1977-2009, May.
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    4. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    5. Graziela Darla Araujo Galvão & Steve Evans & Paulo Sergio Scoleze Ferrer & Marly Monteiro de Carvalho, 2022. "Circular business model: Breaking down barriers towards sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1504-1524, May.
    6. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    7. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    8. Żaneta Muranko & Catriona Tassell & Anouk Zeeuw van der Laan & Marco Aurisicchio, 2021. "Characterisation and Environmental Value Proposition of Reuse Models for Fast-Moving Consumer Goods: Reusable Packaging and Products," Sustainability, MDPI, vol. 13(5), pages 1-35, March.
    9. Yizhong Chen & Li He & Hongwei Lu & Jing Li & Lixia Ren, 2018. "Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3135-3153, July.
    10. Bariş Keçeci & Yusuf Tansel Iç & Ergün Eraslan, 2019. "Development of a Spreadsheet DSS for Multi-Response Taguchi Parameter Optimization Problems Using the TOPSIS, VIKOR, and GRA Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1501-1531, September.
    11. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    12. T. E. Graedel & Barbara K. Reck & Luca Ciacci & Fabrizio Passarini, 2019. "On the Spatial Dimension of the Circular Economy," Resources, MDPI, vol. 8(1), pages 1-10, February.
    13. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    14. Marcus Ritt & Alysson M. Costa & Cristóbal Miralles, 2016. "The assembly line worker assignment and balancing problem with stochastic worker availability," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 907-922, February.
    15. Aschemann-Witzel, Jessica & Stangherlin, Isadora Do Carmo, 2021. "Upcycled by-product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    16. Berzi, Lorenzo & Delogu, Massimo & Pierini, Marco & Romoli, Filippo, 2016. "Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 140-155.
    17. Hervé Corvellec & Alison F. Stowell & Nils Johansson, 2022. "Critiques of the circular economy," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 421-432, April.
    18. Florian Lüdeke‐Freund & Stefan Gold & Nancy M. P. Bocken, 2019. "A Review and Typology of Circular Economy Business Model Patterns," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 36-61, February.
    19. Erik G. Hansen & Ferdinand Revellio, 2020. "Circular value creation architectures: Make, ally, buy, or laissez‐faire," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1250-1273, December.
    20. Christopher Kennedy & Reid Lifset, 2018. "Winners of the 2017 Graedel Prizes: The Journal of Industrial Ecology Best Paper Prizes," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 997-999, October.

    More about this item

    Keywords

    Steel recycling; Steel scrap; Value of information; Excess cost; EVPI;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • L20 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - General
    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics
    • Q39 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Other
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:36:y:2023:i:3:d:10.1007_s13563-022-00361-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.