IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i2p496-508.html
   My bibliography  Save this article

Optimizing steel coil production schedules under continuous casting and hot rolling

Author

Listed:
  • Torres, Nelson
  • Greivel, Gus
  • Betz, Joshua
  • Moreno, Eduardo
  • Newman, Alexandra
  • Thomas, Brian

Abstract

In continuous steel casting operations, heats of molten steel are alloyed and refined in ladles, continuously cast and cut into slabs, and hot-rolled into coils. We present a mixed-integer program that produces a daily casting schedule and that is solved using state-of-the-art software for a 100% direct-charge steel mill; two casters concurrently produce slabs, which are rolled into coils at a single hot rolling mill. This model minimizes penalties incurred by violating plant best practices while strictly adhering to safety and logical constraints to manage risk associated with manufacturing incidents. An efficient formulation, combined with variable reduction and cutting planes, expedites solutions for small instances containing hundreds of variables and thousands of constraints by factors of at least two or three (and sometimes even 100); instances an order of magnitude larger along both problem dimensions suggest solutions that reduce costs incurred using plant best practices by as much as 40%.

Suggested Citation

  • Torres, Nelson & Greivel, Gus & Betz, Joshua & Moreno, Eduardo & Newman, Alexandra & Thomas, Brian, 2024. "Optimizing steel coil production schedules under continuous casting and hot rolling," European Journal of Operational Research, Elsevier, vol. 314(2), pages 496-508.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:496-508
    DOI: 10.1016/j.ejor.2023.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riccardi, R. & Bonenti, F. & Allevi, E. & Avanzi, C. & Gnudi, A., 2015. "The steel industry: A mathematical model under environmental regulations," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1017-1027.
    2. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A mathematical programming model for scheduling steelmaking-continuous casting production," European Journal of Operational Research, Elsevier, vol. 120(2), pages 423-435, January.
    3. Fukuyama, Hirofumi & Liu, Hui-hui & Song, Yao-yao & Yang, Guo-liang, 2021. "Measuring the capacity utilization of the 48 largest iron and steel enterprises in China," European Journal of Operational Research, Elsevier, vol. 288(2), pages 648-665.
    4. Rong, Aiying & Lahdelma, Risto, 2008. "Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production," European Journal of Operational Research, Elsevier, vol. 186(3), pages 953-964, May.
    5. Jose Pinto & Ignacio Grossmann, 1998. "Assignment and sequencing models for thescheduling of process systems," Annals of Operations Research, Springer, vol. 81(0), pages 433-466, June.
    6. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    7. Tang, Lixin & Wang, Gongshu, 2008. "Decision support system for the batching problems of steelmaking and continuous-casting production," Omega, Elsevier, vol. 36(6), pages 976-991, December.
    8. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    9. Lixin Tang & Ying Meng & Gongshu Wang & Zhi-Long Chen & Jiyin Liu & Guofen Hu & Lijun Chen & Bo Zhang, 2014. "Operations Research Transforms Baosteel’s Operations," Interfaces, INFORMS, vol. 44(1), pages 22-38, February.
    10. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    11. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    12. Lixin Tang & Gongshu Wang & Jiyin Liu & Jingyi Liu, 2011. "A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous‐casting production," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 370-388, June.
    13. Lopez, Leo & Carter, Michael W. & Gendreau, Michel, 1998. "The hot strip mill production scheduling problem: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 317-335, April.
    14. Ray, Subhash C. & Kim, Hiung Joon, 1995. "Cost efficiency in the US steel industry: A nonparametric analysis using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 80(3), pages 654-671, February.
    15. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    16. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    17. Mao, Kun & Pan, Quan-ke & Pang, Xinfu & Chai, Tianyou, 2014. "A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process," European Journal of Operational Research, Elsevier, vol. 236(1), pages 51-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixin Tang & Ying Meng & Zhi-Long Chen & Jiyin Liu, 2016. "Coil Batching to Improve Productivity and Energy Utilization in Steel Production," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 262-279, May.
    2. Liu, Min & Jiang, Shenglong & Wu, Cheng, 2015. "A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting processAuthor-Name: Hao, Jinghua," European Journal of Operational Research, Elsevier, vol. 244(3), pages 966-979.
    3. Pieter Moerloose & Broos Maenhout, 2023. "A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints," Operational Research, Springer, vol. 23(1), pages 1-43, March.
    4. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    5. Casado, Silvia & Laguna, Manuel & Pacheco, Joaquín & Puche, Julio C., 2020. "Grouping products for the optimization of production processes: A case in the steel manufacturing industry," European Journal of Operational Research, Elsevier, vol. 286(1), pages 190-202.
    6. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    7. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    8. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    9. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    10. Mujawar, Sachin & Huang, Simin & Nagi, Rakesh, 2012. "Scheduling to minimize stringer utilization for continuous annealing operations," Omega, Elsevier, vol. 40(4), pages 437-444.
    11. Karen Puttkammer & Matthias G. Wichmann & Thomas S. Spengler, 2016. "A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption," Journal of Business Economics, Springer, vol. 86(5), pages 537-573, July.
    12. Slotnick, Susan A., 2011. "Optimal and heuristic lead-time quotation for an integrated steel mill with a minimum batch size," European Journal of Operational Research, Elsevier, vol. 210(3), pages 527-536, May.
    13. Tang, Lixin & Wang, Xianpeng, 2009. "Simultaneously scheduling multiple turns for steel color-coating production," European Journal of Operational Research, Elsevier, vol. 198(3), pages 715-725, November.
    14. Jianyu Long & Zhong Zheng & Xiaoqiang Gao & Panos M Pardalos, 2016. "A hybrid multi-objective evolutionary algorithm based on NSGA-II for practical scheduling with release times in steel plants," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1184-1199, September.
    15. Wichmann, Matthias Gerhard & Spengler, Thomas Stefan, 2015. "Slab scheduling at parallel continuous casters," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 551-562.
    16. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    17. Su, Fuyong & Kong, Linglu & Wang, Hui & Wen, Zhi, 2021. "Modeling and application for rolling scheduling problem based on TSP," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    18. D de Ladurantaye & M Gendreau & J-Y Potvin, 2007. "Scheduling a hot rolling mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 288-300, March.
    19. Zhang, Ruijun & Lu, Jie & Zhang, Guangquan, 2011. "A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces," European Journal of Operational Research, Elsevier, vol. 215(1), pages 194-203, November.
    20. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:2:p:496-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.