IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v108y2016icp140-155.html
   My bibliography  Save this article

Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods

Author

Listed:
  • Berzi, Lorenzo
  • Delogu, Massimo
  • Pierini, Marco
  • Romoli, Filippo

Abstract

The waste treatment related to the End-of-Life phase of durable goods such as electric and electronic equipment and road vehicles is increasingly regulated both from a European and a worldwide point of view. Regarding the transport sector, most L-class vehicles (mopeds, motorcycles, tricycles, quadricycles as defined in Regulation 168/2013/EU) are not fully subjected to the Directive 2000/53/EC, which is the reference for other light vehicle categories. The recent introduction of novel archetypes and innovative powertrains for L-vehicles suggests that such products represent an actual alternative to full conventional vehicles for urban mobility; however, only limited data are available regarding their Recyclability and Recoverability. In order to cover such gap, a comprehensive view of L-class vehicle characteristics from End-of-Life perspective is proposed. The objectives of the study are the definition and the critical analysis of the context in which L-class vehicles are supposed to be treated, the identification of End-of-Life assessment methodologies and the application on a case study. Two different methodologies are compared; both come from other transport sectors. The methodologies differ in terms of performance assessment of recycling and recovery processes.

Suggested Citation

  • Berzi, Lorenzo & Delogu, Massimo & Pierini, Marco & Romoli, Filippo, 2016. "Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 140-155.
  • Handle: RePEc:eee:recore:v:108:y:2016:i:c:p:140-155
    DOI: 10.1016/j.resconrec.2016.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916300131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coates, Gareth & Rahimifard, Shahin, 2007. "Assessing the economics of pre-fragmentation material recovery within the UK," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 286-302.
    2. Schmid, Alexis & Naquin, Pascale & Gourdon, Rémy, 2013. "Incidence of the level of deconstruction on material reuse, recycling and recovery from end-of life vehicles: an industrial-scale experimental study," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 118-126.
    3. Diener, Derek L. & Tillman, Anne-Marie, 2015. "Component end-of-life management: Exploring opportunities and related benefits of remanufacturing and functional recycling," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 80-93.
    4. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    5. Mayyas, Ahmad & Qattawi, Ala & Omar, Mohammed & Shan, Dongri, 2012. "Design for sustainability in automotive industry: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1845-1862.
    6. Millet, Dominique & Yvars, Pierre-Alain & Tonnelier, Pierre, 2012. "A method for identifying the worst recycling case: Application on a range of vehicles in the automotive sector," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 1-13.
    7. Santini, Alessandro & Herrmann, Christoph & Passarini, Fabrizio & Vassura, Ivano & Luger, Tobias & Morselli, Luciano, 2010. "Assessment of Ecodesign potential in reaching new recycling targets," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1128-1134.
    8. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    9. Ohno, Hajime & Matsubae, Kazuyo & Nakajima, Kenichi & Kondo, Yasushi & Nakamura, Shinichiro & Nagasaka, Tetsuya, 2015. "Toward the efficient recycling of alloying elements from end of life vehicle steel scrap," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 11-20.
    10. Cheng, Y.W. & Cheng, J.H. & Wu, C.L. & Lin, C.H., 2012. "Operational characteristics and performance evaluation of the ELV recycling industry in Taiwan," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 29-35.
    11. Saboori, Behnaz & Sapri, Maimunah & bin Baba, Maizan, 2014. "Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach," Energy, Elsevier, vol. 66(C), pages 150-161.
    12. Vermeulen, Isabel & Block, Chantal & Van Caneghem, Jo & Dewulf, Wim & Sikdar, Subhas K. & Vandecasteele, Carlo, 2012. "Sustainability assessment of industrial waste treatment processes: The case of automotive shredder residue," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 17-28.
    13. Boughton, Bob & Horvath, Arpad, 2006. "Environmental assessment of shredder residue management," Resources, Conservation & Recycling, Elsevier, vol. 47(1), pages 1-25.
    14. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    15. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Nygaard Uhrenholt & Jesper Hemdrup Kristensen & Maria Camila Rincón & Sofie Adamsen & Steffen Foldager Jensen & Brian Vejrum Waehrens, 2022. "Maturity Model as a Driver for Circular Economy Transformation," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    2. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Han & Qiao, Qinyu & Liu, Zongwei & Zhao, Fuquan, 2017. "Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 114-125.
    2. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    3. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    4. Divya Tiwari & Jill Miscandlon & Ashutosh Tiwari & Geraint W. Jewell, 2021. "A Review of Circular Economy Research for Electric Motors and the Role of Industry 4.0 Technologies," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    5. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    6. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    7. Diener, Derek L. & Tillman, Anne-Marie, 2016. "Scrapping steel components for recycling—Isn’t that good enough? Seeking improvements in automotive component end-of-life," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 48-60.
    8. Julien Pedneault & Guillaume Majeau‐Bettez & Manuele Margni, 2023. "How much sorting is required for a circular low carbon aluminum economy?," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 977-992, June.
    9. Simic, Vladimir & Dimitrijevic, Branka, 2012. "Production planning for vehicle recycling factories in the EU legislative and global business environments," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 78-88.
    10. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    11. Simic, Vladimir, 2016. "End-of-life vehicles allocation management under multiple uncertainties: An interval-parameter two-stage stochastic full-infinite programming approach," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 1-17.
    12. Robert J.R. Elliott & Viet Nguyen-Tien & Eric Strobl & Chengyu Zhang, 2024. "Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?," CEP Discussion Papers dp1972, Centre for Economic Performance, LSE.
    13. Ho, Sy-Hoa & OUEGHLISSI, Rim & EL FERKTAJI, Riadh, 2019. "The dynamic causality between ESG and economic growth: Evidence from panel causality analysis," MPRA Paper 95390, University Library of Munich, Germany.
    14. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    15. Adriano Cordisco & Riccardo Melloni & Lucia Botti, 2022. "Sustainable Circular Economy for the Integration of Disadvantaged People: A Preliminary Study on the Reuse of Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    16. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    17. Konstantinos Koasidis & Anastasios Karamaneas & Alexandros Nikas & Hera Neofytou & Erlend A. T. Hermansen & Kathleen Vaillancourt & Haris Doukas, 2020. "Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement," Sustainability, MDPI, vol. 12(14), pages 1-37, July.
    18. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    19. Vermeulen, Isabel & Block, Chantal & Van Caneghem, Jo & Dewulf, Wim & Sikdar, Subhas K. & Vandecasteele, Carlo, 2012. "Sustainability assessment of industrial waste treatment processes: The case of automotive shredder residue," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 17-28.
    20. Cao, Jian & Lu, Bo & Chen, Yangyang & Zhang, Xuemei & Zhai, Guangshu & Zhou, Gengui & Jiang, Boxin & Schnoor, Jerald L., 2016. "Extended producer responsibility system in China improves e-waste recycling: Government policies, enterprise, and public awareness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 882-894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:108:y:2016:i:c:p:140-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.