IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v186y2011i1p141-15710.1007-s10479-011-0851-1.html
   My bibliography  Save this article

Stochastic optimization for blending problem in brass casting industry

Author

Listed:
  • Ümit Sakallı
  • Ömer Baykoç
  • Burak Birgören

Abstract

A critical process in brass casting is blending of the raw materials in a furnace so that the specified metal ratios are satisfied. The uncertainties in raw material compositions may cause violations of the specification limits and extra cost. In this study, we proposed a chance-constrained stochastic programming approach for blending problem in brass casting industry to handle the statistical variations in raw material compositions. The proposed approach is a non-linear mathematical model that is solved global optimally by using GAMS/BARON solver. An application has been performed in MKEK brass factory in Kırıkkale, Turkey and the solution of the application has been compared with alternative solution approaches based on cost and specification violation risk conditions. This comparison demonstrates that the proposed model is the most effective solution approach for managing stochastic uncertainties in blending problems and successfully can be used other industries such as alloy steel or secondary aluminum production. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
  • Handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:141-157:10.1007/s10479-011-0851-1
    DOI: 10.1007/s10479-011-0851-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0851-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0851-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashayeri, J. & van Eijs, A. G. M. & Nederstigt, P., 1994. "Blending modelling in a process manufacturing: A case study," European Journal of Operational Research, Elsevier, vol. 72(3), pages 460-468, February.
    2. N. H. Agnew & R. A. Agnew & J. Rasmussen & K. R. Smith, 1969. "An Application of Chance Constrained Programming to Portfolio Selection in a Casualty Insurance Firm," Management Science, INFORMS, vol. 15(10), pages 512-520, June.
    3. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    4. F. J. Vasko & F. E. Wolf & K. L. Stott, 1987. "Optimal Selection of Ingot Sizes Via Set Covering," Operations Research, INFORMS, vol. 35(3), pages 346-353, June.
    5. Rong, Aiying & Lahdelma, Risto, 2008. "Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production," European Journal of Operational Research, Elsevier, vol. 186(3), pages 953-964, May.
    6. George J. Stigler, 1945. "The Cost of Subsistence," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(2), pages 303-314.
    7. Agpak, Kursad & Gokcen, Hadi, 2007. "A chance-constrained approach to stochastic line balancing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1098-1115, August.
    8. Shih, Jhih-Shyang & Frey, H. Christopher, 1995. "Coal blending optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 452-465, June.
    9. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    2. Michel Minoux & Riadh Zorgati, 2017. "Global probability maximization for a Gaussian bilateral inequality in polynomial time," Journal of Global Optimization, Springer, vol. 68(4), pages 879-898, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SakallI, Ümit Sami & Baykoç, Ömer Faruk, 2011. "An optimization approach for brass casting blending problem under aletory and epistemic uncertainties," International Journal of Production Economics, Elsevier, vol. 133(2), pages 708-718, October.
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    4. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    5. Gaustad, Gabrielle & Li, Preston & Kirchain, Randolph, 2007. "Modeling methods for managing raw material compositional uncertainty in alloy production," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 180-207.
    6. Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.
    7. Djeumou Fomeni, Franklin, 2018. "A multi-objective optimization approach for the blending problem in the tea industry," International Journal of Production Economics, Elsevier, vol. 205(C), pages 179-192.
    8. Jinxiang Wei & Zhaolin Hu & Jun Luo & Shushang Zhu, 2024. "Enhanced branch-and-bound algorithm for chance constrained programs with Gaussian mixture models," Annals of Operations Research, Springer, vol. 338(2), pages 1283-1315, July.
    9. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    10. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    11. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).
    12. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    13. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    14. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    15. D. K. Mohanty & Avik Pradhan & M. P. Biswal, 2020. "Chance constrained programming with some non-normal continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1281-1298, December.
    16. Xide Zhu & Peijun Guo, 2020. "Bilevel programming approaches to production planning for multiple products with short life cycles," 4OR, Springer, vol. 18(2), pages 151-175, June.
    17. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
    18. Li, Susan X. & Huang, Zhimin, 1996. "Determination of the portfolio selection for a property-liability insurance company," European Journal of Operational Research, Elsevier, vol. 88(2), pages 257-268, January.
    19. Qiushi Chen & Lei Zhao & Jan C. Fransoo & Zhe Li, 2019. "Dual-mode inventory management under a chance credit constraint," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 147-178, March.
    20. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:141-157:10.1007/s10479-011-0851-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.