IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v74y2016i1d10.1007_s40300-016-0081-z.html
   My bibliography  Save this article

A hierarchical generalised Bayesian SEM to assess quality of democracy in Europe

Author

Listed:
  • Lara Fontanella

    (“G.d’Annunzio” Chieti-Pescara)

  • Annalina Sarra

    (“G.d’Annunzio” Chieti-Pescara)

  • Simone Di Zio

    (“G.d’Annunzio” Chieti-Pescara)

  • Pasquale Valentini

    (“G.d’Annunzio” Chieti-Pescara)

Abstract

During the last decades, many studies have documented a persistent and widespread decline in satisfaction in some established democracies, giving empirical support to the heterogeneity of democratic systems in terms of their quality. The main implication is that if democracies vary in terms of their performance, such variation should be reflected in citizens’ satisfaction and support for democratic institutions and in citizens’ political trust. In this paper, we examine which factors are related to democracy satisfaction and political trust in the European countries, with a particular focus on the role of quality of democracy in shaping these attitudes. To comply with the aim of the study, we formulate a Hierarchical Generalised Bayesian Structural Equation Model (SEM). The proposed model combines the advantages of multilevel-multidimensional IRT models and SEM and accounts for explanatory variables and indicators at country and individual levels. To explain cross-national variations in the variables of interest, we rely on data from the European Social Survey (EES) and from the Democracy Barometer. The results show that trust in political institutions goes along with satisfaction with democracy. In addition, our findings highlight the existence of a spatial heterogeneous gap between citizens’ expectations and evaluations of democracy across ESS countries.

Suggested Citation

  • Lara Fontanella & Annalina Sarra & Simone Di Zio & Pasquale Valentini, 2016. "A hierarchical generalised Bayesian SEM to assess quality of democracy in Europe," METRON, Springer;Sapienza Università di Roma, vol. 74(1), pages 117-138, April.
  • Handle: RePEc:spr:metron:v:74:y:2016:i:1:d:10.1007_s40300-016-0081-z
    DOI: 10.1007/s40300-016-0081-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-016-0081-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-016-0081-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis Tuerlinckx & Paul Boeck, 2005. "Two interpretations of the discrimination parameter," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 629-650, December.
    2. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    3. Martijn G. De Jong & Jan-Benedict E. M. Steenkamp & Jean-Paul Fox, 2007. "Relaxing Measurement Invariance in Cross-National Consumer Research Using a Hierarchical IRT Model," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(2), pages 260-278, June.
    4. David Andrich, 1995. "Models for measurement, precision, and the nondichotomization of graded responses," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 7-26, March.
    5. Martijn Jong & Jan-Benedict Steenkamp, 2010. "Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 3-32, March.
    6. Francesca DE BATTISTI & Giovanna NICOLINI & Silvia SALINI, 2003. "The rasch model to measure service quality," Departmental Working Papers 2003-27, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lara Fontanella & Annalina Sarra & Pasquale Valentini & Simone Zio & Sara Fontanella, 2018. "Varying levels of anomie in Europe: a multilevel analysis based on multidimensional IRT models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 589-610, October.
    2. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    3. Frank Rijmen & Minjeong Jeon, 2013. "Fitting an item response theory model with random item effects across groups by a variational approximation method," Annals of Operations Research, Springer, vol. 206(1), pages 647-662, July.
    4. Lara Fontanella & Paola Villano & Marika Di Donato, 2016. "Attitudes towards Roma people and migrants: a comparison through a Bayesian multidimensional IRT model," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 471-490, March.
    5. Tellis, Gerard J. & Chandrasekaran, Deepa, 2010. "Extent and impact of response biases in cross-national survey research," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 329-341.
    6. Jan-Benedict E.M. Steenkamp & Alberto Maydeu-Olivares, 2021. "An updated paradigm for evaluating measurement invariance incorporating common method variance and its assessment," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 5-29, January.
    7. Martijn Jong & Jan-Benedict Steenkamp, 2010. "Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 3-32, March.
    8. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    9. Salzberger, Thomas & Newton, Fiona J. & Ewing, Michael T., 2014. "Detecting gender item bias and differential manifest response behavior: A Rasch-based solution," Journal of Business Research, Elsevier, vol. 67(4), pages 598-607.
    10. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    11. Wang, Luming & Finn, Adam, 2013. "Dual-faceted multidimensional IRT models with hierarchical structure," Australasian marketing journal, Elsevier, vol. 21(2), pages 111-118.
    12. Steven Andrew Culpepper & James Joseph Balamuta, 2017. "A Hierarchical Model for Accuracy and Choice on Standardized Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 820-845, September.
    13. Wang, Luming & Finn, Adam, 2014. "A psychometric theory that measures up to marketing reality: An adapted Many Faceted IRT model," Australasian marketing journal, Elsevier, vol. 22(2), pages 93-102.
    14. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    15. Giovanna NICOLINI & Francesca DE BATTISTI, 2004. "Global indexes for the evaluation of university teaching," Departmental Working Papers 2004-15, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    16. Christian A. Gregory, 2020. "Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 632-655, October.
    17. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    18. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    19. Joseph Chow & Kerry Kennedy, 2012. "Citizenship and Governance in the Asian Region: Insights from The International Civic and Citizenship Education Study," Public Organization Review, Springer, vol. 12(3), pages 299-311, September.
    20. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:74:y:2016:i:1:d:10.1007_s40300-016-0081-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.