IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v206y2013i1p647-66210.1007-s10479-012-1181-7.html
   My bibliography  Save this article

Fitting an item response theory model with random item effects across groups by a variational approximation method

Author

Listed:
  • Frank Rijmen
  • Minjeong Jeon

Abstract

Purpose. Data from international educational assessments conducted in many countries are mostly analyzed using item response theory. The assumption that all items behave the same in all countries is often not tenable. The variability of item parameters across countries can be taken into account by assuming that the item parameters are random effects (De Jong et al. in J. Consum. Res. 34:260–278, 2007 ; De Jong and Steenkamp in Psychometrika 75:3–32, 2010 ). However, the complex latent structure of such a model, with latent variables both at the item and the person level, renders maximum likelihood estimation computationally challenging. We describe a variational estimation technique that consists of approximating the likelihood function by a computationally tractable lower bound. Methods. A mean field approximation to the posterior distribution of the latent variables was used. The update equations were derived for the specific case of discrete random effects and implemented in a Maximization Maximization algorithm (Neal and Hinton in M.I. Jordan (Ed.) Learning in Graphical Models, Kluwer Academic, Dordrecht, pp. 355–368, 1998 ). Parameter recovery was investigated in a simulation study. The method was also applied to the Progress in International Reading Study of 2006. Results. The model parameters were recovered well under all conditions of the simulation study. In the application, the estimated variances of the random item effects showed a high positive correlation with traditional measures for the lack of item invariance across groups. Conclusions. The mean field approximation and variational methods in general offer a computationally tractable alternative to exact maximum likelihood estimation. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Frank Rijmen & Minjeong Jeon, 2013. "Fitting an item response theory model with random item effects across groups by a variational approximation method," Annals of Operations Research, Springer, vol. 206(1), pages 647-662, July.
  • Handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:647-662:10.1007/s10479-012-1181-7
    DOI: 10.1007/s10479-012-1181-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1181-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1181-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Frank Rijmen & Kristof Vansteelandt & Paul Boeck, 2008. "Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 167-182, June.
    3. K. Humphreys & D. Titterington, 2003. "Variational approximations for categorical causal modeling with latent variables," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 391-412, September.
    4. Rianne Janssen & Francis Tuerlinckx & Michel Meulders & Paul De Boeck, 2000. "A Hierarchical IRT Model for Criterion-Referenced Measurement," Journal of Educational and Behavioral Statistics, , vol. 25(3), pages 285-306, September.
    5. Martijn G. De Jong & Jan-Benedict E. M. Steenkamp & Jean-Paul Fox, 2007. "Relaxing Measurement Invariance in Cross-National Consumer Research Using a Hierarchical IRT Model," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(2), pages 260-278, June.
    6. Martijn Jong & Jan-Benedict Steenkamp, 2010. "Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 3-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    2. Chengyu Cui & Chun Wang & Gongjun Xu, 2024. "Variational Estimation for Multidimensional Generalized Partial Credit Model," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 929-957, September.
    3. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    4. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    5. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    2. Tellis, Gerard J. & Chandrasekaran, Deepa, 2010. "Extent and impact of response biases in cross-national survey research," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 329-341.
    3. Lara Fontanella & Annalina Sarra & Simone Di Zio & Pasquale Valentini, 2016. "A hierarchical generalised Bayesian SEM to assess quality of democracy in Europe," METRON, Springer;Sapienza Università di Roma, vol. 74(1), pages 117-138, April.
    4. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    5. Alexander Weissman, 2013. "Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 134-153, January.
    6. Jan-Benedict E.M. Steenkamp & Alberto Maydeu-Olivares, 2021. "An updated paradigm for evaluating measurement invariance incorporating common method variance and its assessment," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 5-29, January.
    7. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    8. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    9. de Jong, M.G., 2006. "Response bias in international marketing research," Other publications TiSEM 5d4031be-97b5-4db3-962b-2, Tilburg University, School of Economics and Management.
    10. Salim Moussa, 2016. "A two-step item response theory procedure for a better measurement of marketing constructs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(1), pages 28-50, March.
    11. Lara Fontanella & Annalina Sarra & Pasquale Valentini & Simone Zio & Sara Fontanella, 2018. "Varying levels of anomie in Europe: a multilevel analysis based on multidimensional IRT models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 589-610, October.
    12. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    13. Alexander Robitzsch, 2024. "Bias-Reduced Haebara and Stocking–Lord Linking," J, MDPI, vol. 7(3), pages 1-12, September.
    14. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    15. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    16. Wang, Luming & Finn, Adam, 2014. "A psychometric theory that measures up to marketing reality: An adapted Many Faceted IRT model," Australasian marketing journal, Elsevier, vol. 22(2), pages 93-102.
    17. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    18. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    19. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    20. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:647-662:10.1007/s10479-012-1181-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.