IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1701-1720.html
   My bibliography  Save this article

Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts

Author

Listed:
  • Olafsdottir, Helga Kristin
  • Rootzén, Holger
  • Bolin, David

Abstract

Statistical analysis of extremes can be used to predict the probability of future extreme events, such as large rainfalls or devastating windstorms. The quality of these forecasts can be measured through scoring rules. Locally scale invariant scoring rules give equal importance to the forecasts at different locations regardless of differences in the prediction uncertainty. This is a useful feature when computing average scores but can be an unnecessarily strict requirement when one is mostly concerned with extremes. We propose the concept of local weight-scale invariance, describing scoring rules fulfilling local scale invariance in a certain region of interest, and as a special case, local tail-scale invariance for large events. Moreover, a new version of the weighted continuous ranked probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this property is developed and studied. The score is a suitable alternative for scoring extreme value models over areas with a varying scale of extreme events, and we derive explicit formulas of the score for the generalised extreme value distribution. The scoring rules are compared through simulations, and their usage is illustrated by modelling extreme water levels and annual maximum rainfall, and in an application to non-extreme forecasts for the prediction of air pollution.

Suggested Citation

  • Olafsdottir, Helga Kristin & Rootzén, Holger & Bolin, David, 2024. "Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1701-1720.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1701-1720
    DOI: 10.1016/j.ijforecast.2024.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1701-1720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.