IDEAS home Printed from https://ideas.repec.org/p/zbw/iwqwdp/012014.html
   My bibliography  Save this paper

Learning cost sensitive binary classification rules accounting for uncertain and unequal misclassification costs

Author

Listed:
  • Rybizki, Lydia

Abstract

This paper proposes cost sensitive criteria for constructing classification rules by supervised learning methods. Reinterpreting established loss functions and considering those introduced by Buja, Stuetzle, et al. (2005) and Hand (2009), we identify criteria reflecting different degrees of information about misclassification costs. To adapt classification methodology to practical cost considerations, we suggest the use of these criteria for different model selection approaches in supervised learning. In addition, we investigate the effects of cost sensitive adaptations in CART and boosting and conclude that adaptations are more promising in the selection rather than in the estimation step.

Suggested Citation

  • Rybizki, Lydia, 2014. "Learning cost sensitive binary classification rules accounting for uncertain and unequal misclassification costs," FAU Discussion Papers in Economics 01/2014, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  • Handle: RePEc:zbw:iwqwdp:012014
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/94192/1/779861043.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Osamu Komori, 2011. "A boosting method for maximization of the area under the ROC curve," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 961-979, October.
    2. A. Dawid, 2007. "The geometry of proper scoring rules," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(1), pages 77-93, March.
    3. Hand D.J. & Vinciotti V., 2003. "Local Versus Global Models for Classification Problems: Fitting Models Where it Matters," The American Statistician, American Statistical Association, vol. 57, pages 124-131, May.
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    2. Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
    3. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2008. "Scoring Rules, Generalized Entropy, and Utility Maximization," Operations Research, INFORMS, vol. 56(5), pages 1146-1157, October.
    4. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    5. Fang, Fang & Stinchcombe, Maxwell B. & Whinston, Andrew B., 2010. "Proper scoring rules with arbitrary value functions," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1200-1210, November.
    6. Jonas R. Brehmer & Tilmann Gneiting, 2020. "Properization: constructing proper scoring rules via Bayes acts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 659-673, June.
    7. Edgar C. Merkle & Mark Steyvers, 2013. "Choosing a Strictly Proper Scoring Rule," Decision Analysis, INFORMS, vol. 10(4), pages 292-304, December.
    8. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    9. David J. Johnstone & Victor Richmond R. Jose & Robert L. Winkler, 2011. "Tailored Scoring Rules for Probabilities," Decision Analysis, INFORMS, vol. 8(4), pages 256-268, December.
    10. A. Dawid & Monica Musio, 2013. "Estimation of spatial processes using local scoring rules," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 173-179, April.
    11. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    12. Zachary J. Smith & J. Eric Bickel, 2020. "Additive Scoring Rules for Discrete Sample Spaces," Decision Analysis, INFORMS, vol. 17(2), pages 115-133, June.
    13. D. J. Hand & C. Anagnostopoulos, 2023. "Notes on the H-measure of classifier performance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 109-124, March.
    14. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    15. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    16. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    17. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    18. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    19. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwqwdp:012014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.