IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v80y2017i6d10.1007_s00184-017-0624-1.html
   My bibliography  Save this article

R-optimal designs for multi-factor models with heteroscedastic errors

Author

Listed:
  • Lei He

    (Shanghai Normal University)

  • Rong-Xian Yue

    (Shanghai Normal University
    Scientific Computing Key Laboratory of Shanghai Universities)

Abstract

In this paper, we consider the R-optimal design problem for multi-factor regression models with heteroscedastic errors. It is shown that a R-optimal design for the heteroscedastic Kronecker product model is given by the product of the R-optimal designs for the marginal one-factor models. However, R-optimal designs for the additive models can be constructed from R-optimal designs for the one-factor models only if sufficient conditions are satisfied. Several examples are presented to illustrate and check optimal designs based on R-optimality criterion.

Suggested Citation

  • Lei He & Rong-Xian Yue, 2017. "R-optimal designs for multi-factor models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 717-732, November.
  • Handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0624-1
    DOI: 10.1007/s00184-017-0624-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-017-0624-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-017-0624-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Liu & Rong-Xian Yue, 2013. "A note on $$R$$ -optimal designs for multiresponse models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 483-493, May.
    2. Carmelo Rodríguez & Isabel Ortiz & Ignacio Martínez, 2016. "A-optimal designs for heteroscedastic multifactor regression models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(3), pages 757-771, February.
    3. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    4. Grace Montepiedra & Weng Wong, 2001. "A New Design Criterion When Heteroscedasticity is Ignored," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 418-426, June.
    5. S. Biedermann & H. Dette & D. C. Woods, 2011. "Optimal design for additive partially nonlinear models," Biometrika, Biometrika Trust, vol. 98(2), pages 449-458.
    6. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min-Jue Zhang & Rong-Xian Yue, 2020. "Locally D-optimal designs for heteroscedastic polynomial measurement error models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 643-656, August.
    2. Lei He, 2021. "Bayesian optimal designs for multi-factor nonlinear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 223-233, March.
    3. Xin Liu & Rong-Xian Yue, 2020. "Elfving’s theorem for R-optimality of experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 485-498, May.
    4. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    5. He, Lei, 2018. "Optimal designs for multi-factor nonlinear models based on the second-order least squares estimator," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 201-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    2. Lei He, 2021. "Bayesian optimal designs for multi-factor nonlinear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 223-233, March.
    3. He, Lei, 2018. "Optimal designs for multi-factor nonlinear models based on the second-order least squares estimator," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 201-208.
    4. Xin Liu & Rong-Xian Yue, 2020. "Elfving’s theorem for R-optimality of experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 485-498, May.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    7. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    8. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    9. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    11. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    12. X. Jessie Jeng & Huimin Peng & Wenbin Lu, 2021. "Model Selection With Mixed Variables on the Lasso Path," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 170-184, May.
    13. Shengchun Kong & Zhuqing Yu & Xianyang Zhang & Guang Cheng, 2021. "High‐dimensional robust inference for Cox regression models using desparsified Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1068-1095, September.
    14. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    15. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    16. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    17. Saulius Jokubaitis & Remigijus Leipus, 2022. "Asymptotic Normality in Linear Regression with Approximately Sparse Structure," Mathematics, MDPI, vol. 10(10), pages 1-28, May.
    18. Stéphane Chrétien & Camille Giampiccolo & Wenjuan Sun & Jessica Talbott, 2021. "Fast Hyperparameter Calibration of Sparsity Enforcing Penalties in Total Generalised Variation Penalised Reconstruction Methods for XCT Using a Planted Virtual Reference Image," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    19. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    20. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0624-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.