IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v83y2020i4d10.1007_s00184-019-00728-3.html
   My bibliography  Save this article

Elfving’s theorem for R-optimality of experimental designs

Author

Listed:
  • Xin Liu

    (Donghua University)

  • Rong-Xian Yue

    (Shanghai Normal University)

Abstract

The present paper is devoted to the construction of R-optimal designs in multiresponse linear models. The R-optimality criterion introduced by Dette (J R Stat Soc Ser B 59:97–110, 1997) minimizes the volume of Bonferroni rectangular confidence region for the parameter estimation. A generalization of Elfving’s theorem is proved for the optimal designs with respect to R-optimality, which gives a geometric characterization of R-optimal designs. The geometric characterizations of the R-optimal designs are illustrated by four examples.

Suggested Citation

  • Xin Liu & Rong-Xian Yue, 2020. "Elfving’s theorem for R-optimality of experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 485-498, May.
  • Handle: RePEc:spr:metrik:v:83:y:2020:i:4:d:10.1007_s00184-019-00728-3
    DOI: 10.1007/s00184-019-00728-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-019-00728-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-019-00728-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Holland‐Letz & Holger Dette & Andrey Pepelyshev, 2011. "A geometric characterization of optimal designs for regression models with correlated observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 239-252, March.
    2. Xin Liu & Rong-Xian Yue, 2013. "A note on $$R$$ -optimal designs for multiresponse models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 483-493, May.
    3. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    4. Lei He & Rong-Xian Yue, 2017. "R-optimal designs for multi-factor models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 717-732, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    2. Lei He & Rong-Xian Yue, 2017. "R-optimal designs for multi-factor models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 717-732, November.
    3. He, Lei, 2018. "Optimal designs for multi-factor nonlinear models based on the second-order least squares estimator," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 201-208.
    4. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    5. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    6. Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    8. Dette, Holger & Melas, Viatcheslav B. & Pepelyshev, Andrey, 2006. "Optimal designs for free knot least squares splines," Technical Reports 2006,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Li, Guanghui & Zhang, Chongqi, 2017. "The pseudo component transformation design for experiment with mixture," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 19-24.
    10. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    12. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    13. Lei He, 2021. "Bayesian optimal designs for multi-factor nonlinear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 223-233, March.
    14. Dette, Holger & Biedermann, Stefanie & Pepelyshev, Andrey, 2004. "Some robust design strategies for percentile estimation in binary response models," Technical Reports 2004,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Min-Jue Zhang & Rong-Xian Yue, 2020. "Locally D-optimal designs for heteroscedastic polynomial measurement error models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 643-656, August.
    17. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    18. Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.
    19. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2020. "Geometric characterization of D-optimal designs for random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    20. I. Ortiz & I. Martínez & C. Rodríguez & Y. Águila, 2009. "Optimal designs for generalized linear models with biased response," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(2), pages 225-237, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:83:y:2020:i:4:d:10.1007_s00184-019-00728-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.