IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i2p449-458.html
   My bibliography  Save this article

Optimal design for additive partially nonlinear models

Author

Listed:
  • S. Biedermann
  • H. Dette
  • D. C. Woods

Abstract

We develop optimal design theory for additive partially nonlinear regression models, showing that Bayesian and standardized maximin D-optimal designs can be found as the products of the corresponding optimal designs in one dimension. A sufficient condition under which analogous results hold for D s -optimality is derived to accommodate situations in which only a subset of the model parameters is of interest. To facilitate prediction of the response at unobserved locations, we prove similar results for Q-optimality in the class of all product designs. The usefulness of this approach is demonstrated through an application from the automotive industry, where optimal designs for least squares regression splines are determined and compared with designs commonly used in practice. Copyright 2011, Oxford University Press.

Suggested Citation

  • S. Biedermann & H. Dette & D. C. Woods, 2011. "Optimal design for additive partially nonlinear models," Biometrika, Biometrika Trust, vol. 98(2), pages 449-458.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:449-458
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr001
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei He, 2021. "Bayesian optimal designs for multi-factor nonlinear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 223-233, March.
    2. Lei He & Rong-Xian Yue, 2017. "R-optimal designs for multi-factor models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 717-732, November.
    3. Rui Li & Yuanyuan Zhang, 2021. "Two-stage estimation and simultaneous confidence band in partially nonlinear additive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1109-1140, November.
    4. He, Lei, 2018. "Optimal designs for multi-factor nonlinear models based on the second-order least squares estimator," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 201-208.
    5. Thomas Schaubroeck & Simon Schaubroeck & Reinout Heijungs & Alessandra Zamagni & Miguel Brandão & Enrico Benetto, 2021. "Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-47, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:449-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.