IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i3p757-771.html
   My bibliography  Save this article

A-optimal designs for heteroscedastic multifactor regression models

Author

Listed:
  • Carmelo Rodríguez
  • Isabel Ortiz
  • Ignacio Martínez

Abstract

This paper searches for A-optimal designs for Kronecker product and additive regression models when the errors are heteroscedastic. Sufficient conditions are given so that A-optimal designs for the multifactor models can be built from A-optimal designs for their sub-models with a single factor. The results of an efficiency study carried out to check the adequacy of the products of optimal designs for uni-factor marginal models when these are used to estimate different multi-factor models are also reported.

Suggested Citation

  • Carmelo Rodríguez & Isabel Ortiz & Ignacio Martínez, 2016. "A-optimal designs for heteroscedastic multifactor regression models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(3), pages 757-771, February.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:3:p:757-771
    DOI: 10.1080/03610926.2013.835419
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.835419
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.835419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min-Jue Zhang & Rong-Xian Yue, 2020. "Locally D-optimal designs for heteroscedastic polynomial measurement error models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 643-656, August.
    2. Lei He, 2021. "Bayesian optimal designs for multi-factor nonlinear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 223-233, March.
    3. Lei He & Rong-Xian Yue, 2017. "R-optimal designs for multi-factor models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 717-732, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:3:p:757-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.