IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v76y2013i4p495-519.html
   My bibliography  Save this article

Capture–recapture estimation based upon the geometric distribution allowing for heterogeneity

Author

Listed:
  • Sa-aat Niwitpong
  • Dankmar Böhning
  • Peter Heijden
  • Heinz Holling

Abstract

Capture–Recapture methods aim to estimate the size of an elusive target population. Each member of the target population carries a count of identifications by some identifying mechanism—the number of times it has been identified during the observational period. Only positive counts are observed and inference needs to be based on the observed count distribution. A widely used assumption for the count distribution is a Poisson mixture. If the mixing distribution can be described by an exponential density, the geometric distribution arises as the marginal. This note discusses population size estimation on the basis of the zero-truncated geometric (a geometric again itself). In addition, population heterogeneity is considered for the geometric. Chao’s estimator is developed for the mixture of geometric distributions and provides a lower bound estimator which is valid under arbitrary mixing on the parameter of the geometric. However, Chao’s estimator is also known for its relatively large variance (if compared to the maximum likelihood estimator). Another estimator based on a censored geometric likelihood is suggested which uses the entire sample information but is less affected by model misspecifications. Simulation studies illustrate that the proposed censored estimator comprises a good compromise between the maximum likelihood estimator and Chao’s estimator, e.g. between efficiency and bias. Copyright Springer-Verlag 2013

Suggested Citation

  • Sa-aat Niwitpong & Dankmar Böhning & Peter Heijden & Heinz Holling, 2013. "Capture–recapture estimation based upon the geometric distribution allowing for heterogeneity," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 495-519, May.
  • Handle: RePEc:spr:metrik:v:76:y:2013:i:4:p:495-519
    DOI: 10.1007/s00184-012-0401-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-012-0401-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-012-0401-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Roberts & Devon D. Brewer, 2006. "Estimating the prevalence of male clients of prostitute women in Vancouver with a simple capture–recapture method," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 745-756, October.
    2. Peter G.M. Van Der Heijden & Maarten Cruyff & Hans C. Van Houwelingen, 2003. "Estimating the Size of a Criminal Population from Police Records Using the Truncated Poisson Regression Model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(3), pages 289-304, August.
    3. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    4. Wang, Ji-Ping Z. & Lindsay, Bruce G., 2005. "A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 942-959, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    2. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2019. "On the Turing estimator in capture–recapture count data under the geometric distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 149-172, March.
    3. Jiménez-Gamero, M.D. & Alba-Fernández, M.V., 2021. "A test for the geometric distribution based on linear regression of order statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 103-123.
    4. Ryan T. Godwin & Dankmar Böhning, 2017. "Estimation of the population size by using the one-inflated positive Poisson model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 425-448, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dankmar Böhning & Alberto Vidal-Diez & Rattana Lerdsuwansri & Chukiat Viwatwongkasem & Mark Arnold, 2013. "A Generalization of Chao's Estimator for Covariate Information," Biometrics, The International Biometric Society, vol. 69(4), pages 1033-1042, December.
    2. Dankmar Böhning & Panicha Kaskasamkul & Peter G. M. Heijden, 2019. "A modification of Chao’s lower bound estimator in the case of one-inflation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 361-384, April.
    3. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.
    4. Dankmar Böhning, 2010. "Some General Comparative Points on Chao's and Zelterman's Estimators of the Population Size," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 221-236, June.
    5. Azam, Anahita & Hendrickx, Jef & Adriaenssens, Stef, 2021. "Estimating the Prostitution Population in the Netherlands and Belgium: A Capture-Recapture Application to Online Data," MPRA Paper 110505, University Library of Munich, Germany.
    6. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    7. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    8. repec:jss:jstsof:40:i09 is not listed on IDEAS
    9. Lanumteang, K. & Böhning, D., 2011. "An extension of Chao's estimator of population size based on the first three capture frequency counts," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2302-2311, July.
    10. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    11. repec:jss:jstsof:19:i05 is not listed on IDEAS
    12. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    13. Huggins, Richard, 2007. "On the use of linear models in the estimation of the size of a population using capture-recapture data," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 649-653, March.
    14. Seungchul Baek & Junyong Park, 2022. "A computationally efficient approach to estimating species richness and rarefaction curve," Computational Statistics, Springer, vol. 37(4), pages 1919-1941, September.
    15. Olivier Binette & Rebecca C. Steorts, 2022. "On the reliability of multiple systems estimation for the quantification of modern slavery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 640-676, April.
    16. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    17. Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
    18. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    19. William A. Link, 2006. "The author replied as follows:," Biometrics, The International Biometric Society, vol. 62(3), pages 936-939, September.
    20. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    21. Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
    22. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:76:y:2013:i:4:p:495-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.