IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i6p713-728.html
   My bibliography  Save this article

Estimating linear functionals in Poisson mixture models

Author

Listed:
  • Laurent Cavalier
  • Nicolas Hengartner

Abstract

This paper concerns the problem of estimating linear functionals of the mixing distribution from Poisson mixture observations. In particular, linear functionals for which a parametric rate of convergence cannot be achieved are studied. It appears that Gaussian functionals are rather easy to estimate. Estimation of the distribution functions is then considered by approximating this functional using Gaussian functionals. Finally, the case of smooth distribution functions is considered in order to deal with rather general linear functionals.

Suggested Citation

  • Laurent Cavalier & Nicolas Hengartner, 2009. "Estimating linear functionals in Poisson mixture models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(6), pages 713-728.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:6:p:713-728
    DOI: 10.1080/10485250902971716
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902971716
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902971716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ji-Ping, 2007. "A linearization procedure and a VDM/ECM algorithm for penalized and constrained nonparametric maximum likelihood estimation for mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2946-2957, March.
    2. Wang, Ji-Ping Z. & Lindsay, Bruce G., 2005. "A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 942-959, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:40:i09 is not listed on IDEAS
    2. Seungchul Baek & Junyong Park, 2022. "A computationally efficient approach to estimating species richness and rarefaction curve," Computational Statistics, Springer, vol. 37(4), pages 1919-1941, September.
    3. Yangxin Huang & Xiaosun Lu & Jiaqing Chen & Juan Liang & Miriam Zangmeister, 2018. "Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 699-718, October.
    4. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    5. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    6. Dankmar Böhning & Panicha Kaskasamkul & Peter G. M. Heijden, 2019. "A modification of Chao’s lower bound estimator in the case of one-inflation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 361-384, April.
    7. Antic, J. & Laffont, C.M. & Chafaï, D. & Concordet, D., 2009. "Comparison of nonparametric methods in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 642-656, January.
    8. Sarantis Tsiaplias & Chew Lian Chua, 2013. "A Multivariate GARCH Model Incorporating the Direct and Indirect Transmission of Shocks," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 244-271, February.
    9. Yong Wang, 2009. "The constrained Fisher scoring method for maximum likelihood computation of a nonparametric mixing distribution," Computational Statistics, Springer, vol. 24(1), pages 67-81, February.
    10. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    11. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    12. Dankmar Böhning & Alberto Vidal-Diez & Rattana Lerdsuwansri & Chukiat Viwatwongkasem & Mark Arnold, 2013. "A Generalization of Chao's Estimator for Covariate Information," Biometrics, The International Biometric Society, vol. 69(4), pages 1033-1042, December.
    13. Yang Liu & Rong Kuang & Guanfu Liu, 2024. "Penalized likelihood inference for the finite mixture of Poisson distributions from capture-recapture data," Statistical Papers, Springer, vol. 65(5), pages 2751-2773, July.
    14. Wang, Ji-Ping, 2007. "A linearization procedure and a VDM/ECM algorithm for penalized and constrained nonparametric maximum likelihood estimation for mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2946-2957, March.
    15. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    16. Fu, Liyong & Wang, Mingliang & Lei, Yuancai & Tang, Shouzheng, 2014. "Parameter estimation of two-level nonlinear mixed effects models using first order conditional linearization and the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 173-183.
    17. Panagiotis Besbeas & Byron J. T. Morgan, 2017. "Variance estimation for integrated population models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 439-460, October.
    18. Sa-aat Niwitpong & Dankmar Böhning & Peter Heijden & Heinz Holling, 2013. "Capture–recapture estimation based upon the geometric distribution allowing for heterogeneity," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 495-519, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:6:p:713-728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.