IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v57y2003i3p289-304.html
   My bibliography  Save this article

Estimating the Size of a Criminal Population from Police Records Using the Truncated Poisson Regression Model

Author

Listed:
  • Peter G.M. Van Der Heijden
  • Maarten Cruyff
  • Hans C. Van Houwelingen

Abstract

The truncated Poisson regression model is used to arrive at point and interval estimates of the size of two offender populations, i.e. drunk drivers and persons who illegally possess firearms. The dependent capture–recapture variables are constructed from Dutch police records and are counts of individual arrests for both violations. The population size estimates are derived assuming that each count is a realization of a Poisson distribution, and that the Poisson parameters are related to covariates through the truncated Poisson regression model. These assumptions are discussed in detail, and the tenability of the second assumption is assessed by evaluating the marginal residuals and performing tests on overdispersion. For the firearms example, the second assumption seems to hold well, but for the drunk drivers example there is some overdispersion. It is concluded that the method is useful, provided it is used with care.

Suggested Citation

  • Peter G.M. Van Der Heijden & Maarten Cruyff & Hans C. Van Houwelingen, 2003. "Estimating the Size of a Criminal Population from Police Records Using the Truncated Poisson Regression Model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(3), pages 289-304, August.
  • Handle: RePEc:bla:stanee:v:57:y:2003:i:3:p:289-304
    DOI: 10.1111/1467-9574.00232
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9574.00232
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9574.00232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spencer P. Chainey & Dennis L. Lazarus, 2021. "More Offenders, More Crime: Estimating the Size of the Offender Population in a Latin American Setting," Social Sciences, MDPI, vol. 10(9), pages 1-19, September.
    2. Azam, Anahita & Hendrickx, Jef & Adriaenssens, Stef, 2021. "Estimating the Prostitution Population in the Netherlands and Belgium: A Capture-Recapture Application to Online Data," MPRA Paper 110505, University Library of Munich, Germany.
    3. Yulu Ji & Yang Liu, 2024. "A Penalized Empirical Likelihood Approach for Estimating Population Sizes under the Negative Binomial Regression Model," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    4. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.
    5. Baksh, M. Fazil & Böhning, Dankmar & Lerdsuwansri, Rattana, 2011. "An extension of an over-dispersion test for count data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 466-474, January.
    6. Marco Alfò & Dankmar Böhning & Irene Rocchetti, 2021. "Upper bound estimators of the population size based on ordinal models for capture‐recapture experiments," Biometrics, The International Biometric Society, vol. 77(1), pages 237-248, March.
    7. Dankmar Böhning & Ekkehart Dietz & Ronny Kuhnert & Dieter Schön, 2005. "Mixture models for capture-recapture count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(1), pages 29-43, February.
    8. Lanumteang, K. & Böhning, D., 2011. "An extension of Chao's estimator of population size based on the first three capture frequency counts," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2302-2311, July.
    9. Sa-aat Niwitpong & Dankmar Böhning & Peter Heijden & Heinz Holling, 2013. "Capture–recapture estimation based upon the geometric distribution allowing for heterogeneity," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(4), pages 495-519, May.
    10. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:57:y:2003:i:3:p:289-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.