IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i4d10.1007_s00180-021-01185-1.html
   My bibliography  Save this article

A computationally efficient approach to estimating species richness and rarefaction curve

Author

Listed:
  • Seungchul Baek

    (University of Maryland Baltimore County)

  • Junyong Park

    (Seoul National University)

Abstract

In ecological and educational studies, estimators of the total number of species and rarefaction curve based on empirical samples are important tools. We propose a new method to estimate both rarefaction curve and the number of species based on a ready-made numerical approach such as quadratic optimization. The key idea in developing the proposed algorithm is based on nonparametric empirical Bayes estimation incorporating an interpolated rarefaction curve through quadratic optimization with linear constraints based on g-modeling in Efron (Stat Sci 29:285–301, 2014). Our proposed algorithm is easily implemented and shows better performances than existing methods in terms of computational speed and accuracy. Furthermore, we provide a criterion of model selection to choose some tuning parameters in estimation procedure and the idea of confidence interval based on asymptotic theory rather than resampling method. We present some asymptotic result of our estimator to validate the efficiency of our estimator theoretically. A broad range of numerical studies including simulations and real data examples are also conducted, and the gain that it produces has been compared to existing methods.

Suggested Citation

  • Seungchul Baek & Junyong Park, 2022. "A computationally efficient approach to estimating species richness and rarefaction curve," Computational Statistics, Springer, vol. 37(4), pages 1919-1941, September.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01185-1
    DOI: 10.1007/s00180-021-01185-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01185-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01185-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ji-Ping, 2011. "SPECIES: An R Package for Species Richness Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i09).
    2. Ji-Ping Wang, 2010. "Estimating species richness by a Poisson-compound gamma model," Biometrika, Biometrika Trust, vol. 97(3), pages 727-740.
    3. SIMAR, Leopold, 1976. "Maximum likelihood estimation of a compound Poisson process," LIDAM Reprints CORE 271, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    5. Silvia G. Acinas & Vanja Klepac-Ceraj & Dana E. Hunt & Chanathip Pharino & Ivica Ceraj & Daniel L. Distel & Martin F. Polz, 2004. "Fine-scale phylogenetic architecture of a complex bacterial community," Nature, Nature, vol. 430(6999), pages 551-554, July.
    6. Chang Xuan Mao & Robert K. Colwell & Jing Chang, 2005. "Estimating the Species Accumulation Curve Using Mixtures," Biometrics, The International Biometric Society, vol. 61(2), pages 433-441, June.
    7. Wang, Ji-Ping Z. & Lindsay, Bruce G., 2005. "A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 942-959, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    2. repec:jss:jstsof:40:i09 is not listed on IDEAS
    3. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    4. Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
    5. Alfò, Marco & Carbonari, Lorenzo & Trovato, Giovanni, 2023. "On the effects of taxation on growth: an empirical assessment," Macroeconomic Dynamics, Cambridge University Press, vol. 27(5), pages 1289-1318, July.
    6. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    7. Andersson, Thomas & Brännäs, Kurt, 1991. "Explaining Cross-Country Variation in Nationalization Frequencies," Working Paper Series 319, Research Institute of Industrial Economics.
    8. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    9. Chang Xuan Mao & Sining Chen & Yitong Yang, 2016. "A Population-Size Model for Protein Spot Detection in Proteomic Studies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 170-180, March.
    10. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    11. Chun-Huo Chiu & Yi-Ting Wang & Bruno A. Walther & Anne Chao, 2014. "An improved nonparametric lower bound of species richness via a modified good–turing frequency formula," Biometrics, The International Biometric Society, vol. 70(3), pages 671-682, September.
    12. Michel Denuit & Claude Lefèvre & Moshe Shaked, 2000. "Stochastic Convexity of the Poisson Mixture Model," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 231-254, September.
    13. Karlis, Dimitris & Patilea, Valentin, 2007. "Confidence intervals of the hazard rate function for discrete distributions using mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5388-5401, July.
    14. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    15. Yacine Koucha & Alfredo D. Egidio dos Reis, 2021. "Approximations to ultimate ruin probabilities with a Wienner process perturbation," Papers 2107.02537, arXiv.org.
    16. Dankmar Böhning & Panicha Kaskasamkul & Peter G. M. Heijden, 2019. "A modification of Chao’s lower bound estimator in the case of one-inflation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(3), pages 361-384, April.
    17. Laurent Cavalier & Nicolas Hengartner, 2009. "Estimating linear functionals in Poisson mixture models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(6), pages 713-728.
    18. Dimitri Karlis & Valentin Patilea, 2004. "Bootstrap Confidence Intervals in Mixtures of Discrete Distributions," Working Papers 2004-06, Center for Research in Economics and Statistics.
    19. Lim, Hwa Kyung & Li, Wai Keung & Yu, Philip L.H., 2014. "Zero-inflated Poisson regression mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 151-158.
    20. Xuan Mao, Chang, 2007. "Estimating population sizes for capture-recapture sampling with binomial mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5211-5219, July.
    21. Balabdaoui, Fadoua & Durot, Cécile & Koladjo, Babagnidé François, 2018. "Testing convexity of a discrete distribution," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 8-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01185-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.