IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v22y2013i1p45-66.html
   My bibliography  Save this article

Improved inference on capture recapture models with behavioural effects

Author

Listed:
  • Danilo Fegatelli
  • Luca Tardella

Abstract

In the context of capture-recapture modeling for estimating the unknown size of a finite population it is often required a flexible framework for dealing with a behavioural response to trapping. Many alternative settings have been proposed in the literature to account for the variation of capture probability at each occasion depending on the previous capture history. Inference is typically carried out relying on the so-called conditional likelihood approach. We highlight that such approach may, with positive probability, lead to inferential pathologies such as unbounded estimates for the finite size of the population. The occurrence of such likelihood failures is characterized within a very general class of behavioural effect models. It is also pointed out that a fully Bayesian analysis overcomes the likelihood failure phenomenon. The overall improved performance of alternative Bayesian estimators is investigated under different non-informative prior distributions verifying their comparative merits with both simulated and real data. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
  • Handle: RePEc:spr:stmapp:v:22:y:2013:i:1:p:45-66
    DOI: 10.1007/s10260-012-0221-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-012-0221-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-012-0221-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartolucci, Francesco & Forcina, Antonio, 2006. "A Class of Latent Marginal Models for CaptureRecapture Data With Continuous Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 786-794, June.
    2. Elena Stanghellini & Peter G. M. van der Heijden, 2004. "A Multiple-Record Systems Estimation Method that Takes Observed and Unobserved Heterogeneity into Account," Biometrics, The International Biometric Society, vol. 60(2), pages 510-516, June.
    3. Zeng, Leilei & Cook, Richard J., 2007. "Transition Models for Multivariate Longitudinal Binary Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 211-223, March.
    4. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    5. Francesco Bartolucci & Antonio Forcina, 2001. "Analysis of Capture-Recapture Data with a Rasch-Type Model Allowing for Conditional Dependence and Multidimensionality," Biometrics, The International Biometric Society, vol. 57(3), pages 714-719, September.
    6. Anne Chao & Wenten Chu & Chiu-Hsieh Hsu, 2000. "Capture–Recapture When Time and Behavioral Response Affect Capture Probabilities," Biometrics, The International Biometric Society, vol. 56(2), pages 427-433, June.
    7. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    8. A. Farcomeni, 2011. "Recapture models under equality constraints for the conditional capture probabilities," Biometrika, Biometrika Trust, vol. 98(1), pages 237-242.
    9. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    10. Luca Tardella, 2002. "A new Bayesian method for nonparametric capture-recapture models in presence of heterogeneity," Biometrika, Biometrika Trust, vol. 89(4), pages 807-817, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
    2. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    3. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    2. Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
    3. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    4. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    5. Chang Xuan Mao & Cuiying Yang & Yitong Yang & Wei Zhuang, 2017. "Estimating population sizes with the Rasch model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 705-716, June.
    6. Shira Mitchell & Al Ozonoff & Alan M. Zaslavsky & Bethany Hedt-Gauthier & Kristian Lum & Brent A. Coull, 2013. "A Comparison of Marginal and Conditional Models for Capture–Recapture Data with Application to Human Rights Violations Data," Biometrics, The International Biometric Society, vol. 69(4), pages 1022-1032, December.
    7. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    8. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.
    9. Di Cecco Davide & Di Zio Marco & Filipponi Danila & Rocchetti Irene, 2018. "Population Size Estimation Using Multiple Incomplete Lists with Overcoverage," Journal of Official Statistics, Sciendo, vol. 34(2), pages 557-572, June.
    10. Baffour Bernard & Brown James J. & Smith Peter W.F., 2021. "Latent Class Analysis for Estimating an Unknown Population Size – with Application to Censuses," Journal of Official Statistics, Sciendo, vol. 37(3), pages 673-697, September.
    11. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    12. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    13. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    14. Chatterjee Kiranmoy & Mukherjee Diganta, 2020. "Identifying the Direction of Behavioral Dependence in Two-Sample Capture-Recapture Study," Journal of Official Statistics, Sciendo, vol. 36(1), pages 25-48, March.
    15. Peter G. M. van der Heijden & Maarten Cruyff & Paul A. Smith & Christine Bycroft & Patrick Graham & Nathaniel Matheson‐Dunning, 2022. "Multiple system estimation using covariates having missing values and measurement error: Estimating the size of the Māori population in New Zealand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 156-177, January.
    16. Forcina, Antonio, 2008. "Identifiability of extended latent class models with individual covariates," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5263-5268, August.
    17. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    18. repec:jss:jstsof:19:i05 is not listed on IDEAS
    19. Chang Xu & Dongchu Sun & Chong He, 2014. "Objective Bayesian analysis for a capture–recapture model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 245-278, April.
    20. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    21. Huggins, Richard, 2007. "On the use of linear models in the estimation of the size of a population using capture-recapture data," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 649-653, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:22:y:2013:i:1:p:45-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.