IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v3y2001i1d10.1023_a1011461923517.html
   My bibliography  Save this article

Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence

Author

Listed:
  • Noel Cressie

    (The Ohio State University)

  • Craig Liu

    (Iowa State University)

Abstract

In this article, we focus on statistical models for binary data on a regular two-dimensional lattice. We study two classes of models, the Markov mesh models (MMMs) based on causal-like, asymmetric spatial dependence, and symmetric Markov random fields (SMFs) based on noncausal-like, symmetric spatial dependence. Building on results of Enting (1977), we give sufficient conditions for the asymmetrically defined binary MMMs (of third order) to be equivalent to a symmetrically defined binary SMF. Although not every binary SMF can be written as a binary MMM, our results show that many can. For such SMFs, their joint distribution can be written in closed form and their realizations can be simulated with just one pass through the lattice. An important consequence of the latter observation is that there are nontrivial spatial processes for which exact probabilities can be used to benchmark the performance of Markov-chain-Monte-Carlo and other algorithms.

Suggested Citation

  • Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
  • Handle: RePEc:spr:metcap:v:3:y:2001:i:1:d:10.1023_a:1011461923517
    DOI: 10.1023/A:1011461923517
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1011461923517
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1011461923517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cressie, Noel & Davidson, Jennifer L., 1998. "Image analysis with partially ordered markov models," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 1-26, November.
    2. Kaiser, Mark S. & Cressie, Noel, 2000. "The Construction of Multivariate Distributions from Markov Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 199-220, May.
    3. J. Møller, 1999. "Perfect simulation of conditionally specified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 251-264.
    4. Lee, Jaehyung & Kaiser, Mark S. & Cressie, Noel, 2001. "Multiway Dependence in Exponential Family Conditional Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 171-190, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilio De Santis & Mauro Piccioni, 2008. "Exact Simulation for Discrete Time Spin Systems and Unilateral Fields," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 105-120, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Casleton & Daniel J. Nordman & Mark S. Kaiser, 2022. "Modeling Transitivity in Local Structure Graph Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 389-417, June.
    2. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
    3. Dreassi, Emanuela & Rigo, Pietro, 2017. "A note on compatibility of conditional autoregressive models," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 9-16.
    4. Noel Cressie & Jun Zhu & Adrian J. Baddeley & M. Gopalan Nair, 2000. "Directed Markov Point Processes as Limits of Partially Ordered Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 2(1), pages 5-21, April.
    5. Noel Cressie & Andrew Zammit-Mangion, 2016. "Multivariate spatial covariance models: a conditional approach," Biometrika, Biometrika Trust, vol. 103(4), pages 915-935.
    6. Linda Khachatryan & Boris S. Nahapetian, 2023. "On the Characterization of a Finite Random Field by Conditional Distribution and its Gibbs Form," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1743-1761, September.
    7. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    8. Petter Arnesen & Håkon Tjelmeland, 2015. "Fully Bayesian Binary Markov Random Field Models: Prior Specification and Posterior Simulation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 967-987, December.
    9. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    10. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    11. Wang, Yuchung J. & Kuo, Kun-Lin, 2010. "Compatibility of discrete conditional distributions with structural zeros," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 191-199, January.
    12. Margrethe Kvale Loe & Håkon Tjelmeland, 2021. "Ensemble updating of binary state vectors by maximizing the expected number of unchanged components," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1148-1185, December.
    13. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    14. van Lieshout, M.N.M. & Stoica, R.S., 2006. "Perfect simulation for marked point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 679-698, November.
    15. Mark S. Kaiser & Petruţa C. Caragea, 2009. "Exploring Dependence with Data on Spatial Lattices," Biometrics, The International Biometric Society, vol. 65(3), pages 857-865, September.
    16. Nail Kashaev & Natalia Lazzati, 2019. "Peer Effects in Random Consideration Sets," Papers 1904.06742, arXiv.org, revised May 2021.
    17. Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
    18. Lee, Jaehyung & Kaiser, Mark S. & Cressie, Noel, 2001. "Multiway Dependence in Exponential Family Conditional Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 171-190, November.
    19. Kopciuszewski, Pawel, 2004. "An extension of the factorization theorem to the non-positive case," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 118-130, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:3:y:2001:i:1:d:10.1023_a:1011461923517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.