IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v2y2000i1d10.1023_a1010095300231.html
   My bibliography  Save this article

Directed Markov Point Processes as Limits of Partially Ordered Markov Models

Author

Listed:
  • Noel Cressie

    (The Ohio State University)

  • Jun Zhu

    (Iowa State University)

  • Adrian J. Baddeley

    (The University of Western Australia)

  • M. Gopalan Nair

    (Curtin University of Technology)

Abstract

In this paper, we consider spatial point processes and investigate members of a subclass of the Markov point processes, termed the directed Markov point processes (DMPPs), whose joint distribution can be written in closed form and, as a consequence, its parameters can be estimated directly. Furthermore, we show how the DMPPs can be simulated rapidly using a one-pass algorithm. A subclass of Markov random fields on a finite lattice, called partially ordered Markov models (POMMs), has analogous structure to that of DMPPs. In this paper, we show that DMPPs are the limits of auto-Poisson and auto-logistic POMMs. These and other results reveal a close link between inference and simulation for DMPPs and POMMs.

Suggested Citation

  • Noel Cressie & Jun Zhu & Adrian J. Baddeley & M. Gopalan Nair, 2000. "Directed Markov Point Processes as Limits of Partially Ordered Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 2(1), pages 5-21, April.
  • Handle: RePEc:spr:metcap:v:2:y:2000:i:1:d:10.1023_a:1010095300231
    DOI: 10.1023/A:1010095300231
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1010095300231
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1010095300231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cressie, Noel & Davidson, Jennifer L., 1998. "Image analysis with partially ordered markov models," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 1-26, November.
    2. Ivanoff, B.Gail & Merzbach, Ely, 1990. "Intensity-based inference for planar point processes," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 269-281, February.
    3. Yosihiko Ogata & Masaharu Tanemura, 1989. "Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(3), pages 583-600, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noel Cressie & Andrew Zammit-Mangion, 2016. "Multivariate spatial covariance models: a conditional approach," Biometrika, Biometrika Trust, vol. 103(4), pages 915-935.
    2. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    3. Matthew Bognar, 2008. "Bayesian modeling of continuously marked spatial point patterns," Computational Statistics, Springer, vol. 23(3), pages 361-379, July.
    4. M. Lieshout, 2006. "A J-Function for Marked Point Patterns," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 235-259, June.
    5. Bognar, Matthew A., 2005. "Bayesian inference for spatially inhomogeneous pairwise interacting point processes," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 1-18, April.
    6. Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
    7. Petter Arnesen & Håkon Tjelmeland, 2015. "Fully Bayesian Binary Markov Random Field Models: Prior Specification and Posterior Simulation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 967-987, December.
    8. Margrethe Kvale Loe & Håkon Tjelmeland, 2021. "Ensemble updating of binary state vectors by maximizing the expected number of unchanged components," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1148-1185, December.
    9. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    10. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:2:y:2000:i:1:d:10.1023_a:1010095300231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.