IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v79y2001i2p171-190.html
   My bibliography  Save this article

Multiway Dependence in Exponential Family Conditional Distributions

Author

Listed:
  • Lee, Jaehyung
  • Kaiser, Mark S.
  • Cressie, Noel

Abstract

Conditionally specified statistical models are frequently constructed from one-parameter exponential family conditional distributions. One way to formulate such a model is to specify the dependence structure among random variables through the use of a Markov random field (MRF). A common assumption on the Gibbsian form of the MRF model is that dependence is expressed only through pairs of random variables, which we refer to as the "pairwise-only dependence" assumption. Based on this assumption, J. Besag (1974, J. Roy. Statist. Soc. Ser. B36, 192-225) formulated exponential family "auto-models" and showed the form that one-parameter exponential family conditional densities must take in such models. We extend these results by relaxing the pairwise-only dependence assumption, and we give a necessary form that one-parameter exponential family conditional densities must take under more general conditions of multiway dependence. Data on the spatial distribution of the European corn borer larvae are fitted using a model with Bernoulli conditional distributions and several dependence structures, including pairwise-only, three-way, and four-way dependencies.

Suggested Citation

  • Lee, Jaehyung & Kaiser, Mark S. & Cressie, Noel, 2001. "Multiway Dependence in Exponential Family Conditional Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 171-190, November.
  • Handle: RePEc:eee:jmvana:v:79:y:2001:i:2:p:171-190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91966-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaiser, Mark S. & Cressie, Noel, 2000. "The Construction of Multivariate Distributions from Markov Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 199-220, May.
    2. Kaiser, Mark S. & Cressie, Noel, 1997. "Modeling Poisson variables with positive spatial dependence," Statistics & Probability Letters, Elsevier, vol. 35(4), pages 423-432, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily Casleton & Daniel J. Nordman & Mark S. Kaiser, 2022. "Modeling Transitivity in Local Structure Graph Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 389-417, June.
    2. Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
    3. Dreassi, Emanuela & Rigo, Pietro, 2017. "A note on compatibility of conditional autoregressive models," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 9-16.
    4. Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Khachatryan & Boris S. Nahapetian, 2023. "On the Characterization of a Finite Random Field by Conditional Distribution and its Gibbs Form," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1743-1761, September.
    2. David Mushinski & Stephan Weiler & Benjamin Widner, 2014. "The impact of retail establishments in hinterlands on the export role of retail establishments in rural places," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 469-487, March.
    3. Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.
    4. Griffith, Daniel A., 2002. "A spatial filtering specification for the auto-Poisson model," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 245-251, July.
    5. Wang, Yuchung J. & Kuo, Kun-Lin, 2010. "Compatibility of discrete conditional distributions with structural zeros," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 191-199, January.
    6. Liesenfeld, Roman & Richard, Jean-François & Vogler, Jan, 2013. "Analysis of discrete dependent variable models with spatial correlation," Economics Working Papers 2013-01, Christian-Albrechts-University of Kiel, Department of Economics.
    7. Daniel A. Griffith, 2024. "Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion," Stats, MDPI, vol. 7(1), pages 1-15, March.
    8. Emily Casleton & Daniel J. Nordman & Mark S. Kaiser, 2022. "Modeling Transitivity in Local Structure Graph Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 389-417, June.
    9. Mark S. Kaiser & Petruţa C. Caragea, 2009. "Exploring Dependence with Data on Spatial Lattices," Biometrics, The International Biometric Society, vol. 65(3), pages 857-865, September.
    10. Isabel Proença & Ludgero Glórias, 2021. "Revisiting the Spatial Autoregressive Exponential Model for Counts and Other Nonnegative Variables, with Application to the Knowledge Production Function," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    11. Dreassi, Emanuela & Rigo, Pietro, 2017. "A note on compatibility of conditional autoregressive models," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 9-16.
    12. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    13. Angel Alañon-Pardo & Patrick J. Walsh & Rafael Myro, 2018. "Do neighboring municipalities matter in industrial location decisions? Empirical evidence from Spain," Empirical Economics, Springer, vol. 55(3), pages 1145-1179, November.
    14. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    15. Angel Alañón Pardo & Josep Maria Arauzo Carod, 2009. "Accessibility and Industrial Location: evidence from Spain," Documentos de trabajo de la Facultad de Ciencias Económicas y Empresariales 09-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales.
    16. Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
    17. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    18. Pushpakanthie Wijekoon & Alwell Oyet & Brajendra C. Sutradhar, 2019. "Pair-Wise Family-Based Correlation Model for Spatial Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 133-184, June.
    19. Ángel Alanón & Rafael Myro, "undated". "Does neighboring "industrial atmosphere" matter in industrial location?. Empirical evidence from Spanish municipalities," Studies on the Spanish Economy 199, FEDEA.
    20. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:79:y:2001:i:2:p:171-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.