IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-021-09921-2.html
   My bibliography  Save this article

Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims

Author

Listed:
  • Dawei Lu

    (Dalian University of Technology
    Dalian University of Technology)

  • Meng Yuan

    (Dalian University of Technology)

Abstract

This paper considers a bidimensional delay-claim risk model with constant force of interest, in which each main claim may induce a delayed claim after a random time. Specifically, if the main claims and delayed claims follow the subexponential distributions with some dependence structure, we obtain some precise asymptotic estimates for the finite-time ruin probabilities. In addition, some numerical simulations are presented to test the performance of the theoretical results.

Suggested Citation

  • Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-021-09921-2
    DOI: 10.1007/s11009-021-09921-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09921-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09921-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Dawei & Zhang, Bin, 2016. "Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 20-29.
    2. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    3. Fengyang Cheng & Dongya Cheng, 2018. "Randomly weighted sums of dependent subexponential random variables with applications to risk theory," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(3), pages 191-202, March.
    4. Yuen, K. C. & Guo, J. Y., 2001. "Ruin probabilities for time-correlated claims in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 47-57, August.
    5. Waters, Howard R. & Papatriandafylou, Alex, 1985. "Ruin probabilities allowing for delay in claims settlement," Insurance: Mathematics and Economics, Elsevier, vol. 4(2), pages 113-122, April.
    6. Yang, Haizhong & Li, Jinzhu, 2019. "On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 153-159.
    7. Chen, Yiqing, 2020. "A Kesten-type bound for sums of randomly weighted subexponential random variables," Statistics & Probability Letters, Elsevier, vol. 158(C).
    8. Xiao, Yuntao & Guo, Junyi, 2007. "The compound binomial risk model with time-correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 124-133, July.
    9. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    10. Xie, Jie-hua & Zou, Wei, 2010. "Expected present value of total dividends in a delayed claims risk model under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 415-422, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawei Lu & Ting Li & Meng Yuan & Xinmei Shen, 2024. "Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-28, September.
    2. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    3. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
    4. Shijie Wang & Yueli Yang & Yang Liu & Lianqiang Yang, 2023. "Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Chen, Zhenlong & Fu, Ke-Ang, 2021. "Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Yang, Haizhong & Li, Jinzhu, 2019. "On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 153-159.
    3. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
    4. Jiyang Tan & Chun Li & Ziqiang Li & Xiangqun Yang & Bicheng Zhang, 2015. "Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 61-83, August.
    5. Yang Yang & Xinzhi Wang & Xiaonan Su & Aili Zhang, 2019. "Asymptotic Behavior of Ruin Probabilities in an Insurance Risk Model with Quasi-Asymptotically Independent or Bivariate Regularly Varying-Tailed Main Claim and By-Claim," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    6. Shijie Wang & Yueli Yang & Yang Liu & Lianqiang Yang, 2023. "Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-13, September.
    7. Xie, Jie-hua & Zou, Wei, 2010. "Expected present value of total dividends in a delayed claims risk model under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 415-422, April.
    8. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    9. He Liu & Zhenhua Bao, 2015. "On a Discrete Interaction Risk Model with Delayed Claims," JRFM, MDPI, vol. 8(4), pages 1-14, September.
    10. Dawei Lu & Ting Li & Meng Yuan & Xinmei Shen, 2024. "Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-28, September.
    11. Kam Pui Wat & Kam Chuen Yuen & Wai Keung Li & Xueyuan Wu, 2018. "On the Compound Binomial Risk Model with Delayed Claims and Randomized Dividends," Risks, MDPI, vol. 6(1), pages 1-13, January.
    12. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    13. Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
    14. Aparna B. S & Neelesh S Upadhye, 2019. "On the Compound Beta-Binomial Risk Model with Delayed Claims and Randomized Dividends," Papers 1908.03407, arXiv.org.
    15. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    16. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    17. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    18. Peng, Jiangyan & Huang, Jin, 2010. "Ruin probability in a one-sided linear model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 662-669, April.
    19. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    20. Zhangting Chen & Dongya Cheng, 2024. "On the Tail Behavior for Randomly Weighted Sums of Dependent Random Variables with its Applications to Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-021-09921-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.