IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i1p149-d1312098.html
   My bibliography  Save this article

Exact Results for the Distribution of Randomly Weighted Sums

Author

Listed:
  • Thomas Hitchen

    (Department of Mathematics, University of Manchester, Manchester M13 9PL, UK)

  • Saralees Nadarajah

    (Department of Mathematics, University of Manchester, Manchester M13 9PL, UK)

Abstract

Dependent random variables play a crucial role in various fields, from finance and statistics to engineering and environmental sciences. Often, interest lies in understanding the aggregate sum of a collection of dependent variables with random weights. In this paper, we provide a comprehensive study of the distribution of the aggregate sum with random weights. Expressions derived include those for the cumulative distribution function, probability density function, conditional expectation, moment generating function, characteristic function, cumulant generating function, moments, variance, skewness, kurtosis, cumulants, value at risk and the expected shortfall. Real data applications are discussed.

Suggested Citation

  • Thomas Hitchen & Saralees Nadarajah, 2024. "Exact Results for the Distribution of Randomly Weighted Sums," Mathematics, MDPI, vol. 12(1), pages 1-22, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:1:p:149-:d:1312098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Cheng & Chao Lu & Jibing Qi & Xuejun Wang, 2022. "Complete moment convergence for randomly weighted sums of extended negatively dependent random variables with application to semiparametric regression models," Statistical Papers, Springer, vol. 63(2), pages 397-419, April.
    2. Dawei Lu & Jialu Wang, 2021. "Complete convergence and complete moment convergence for maximal randomly weighted sums of widely orthant-dependent random variables with applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(4), pages 763-791, February.
    3. Zhang, Yi & Shen, Xinmei & Weng, Chengguo, 2009. "Approximation of the tail probability of randomly weighted sums and applications," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 655-675, February.
    4. Xinmei Shen & Kailin Du, 2023. "Uniform Approximation for the Tail Behavior of Bidimensional Randomly Weighted Sums," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-25, March.
    5. Chen, Yiqing, 2020. "A Kesten-type bound for sums of randomly weighted subexponential random variables," Statistics & Probability Letters, Elsevier, vol. 158(C).
    6. Xiu Xu & Jigao Yan, 2021. "Complete moment convergence for randomly weighted sums of END sequences and its applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(12), pages 2877-2899, June.
    7. Roozegar, Rasool & zarch, Hamid Reza Taherizadeh, 2021. "On the asymptotic distribution of randomly weighted averages of random vectors," Statistics & Probability Letters, Elsevier, vol. 179(C).
    8. Jianxi Lin, 2020. "Second order tail behaviour of randomly weighted heavy-tailed sums and their maxima," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(11), pages 2648-2670, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiangfeng, 2015. "Exact upper tail probabilities of random series," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 13-19.
    2. Xing-Fang Huang & Ting Zhang & Yang Yang & Tao Jiang, 2017. "Ruin Probabilities in a Dependent Discrete-Time Risk Model With Gamma-Like Tailed Insurance Risks," Risks, MDPI, vol. 5(1), pages 1-14, March.
    3. Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
    4. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.
    5. Lin, Jianxi, 2019. "Second order tail approximation for the maxima of randomly weighted sums with applications to ruin theory and numerical examples," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 37-47.
    6. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    7. Zhengyan Lin & Xinmei Shen, 2013. "Approximation of the Tail Probability of Dependent Random Sums Under Consistent Variation and Applications," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 165-186, March.
    8. Tang, Qihe & Wang, Guojing & Yuen, Kam C., 2010. "Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 362-370, April.
    9. Wang, Yinfeng & Yin, Chuancun, 2010. "Approximation for the ruin probabilities in a discrete time risk model with dependent risks," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1335-1342, September.
    10. Jin Yu Zhou & Ji Gao Yan & Fei Du, 2023. "Complete and Complete f -Moment Convergence for Arrays of Rowwise END Random Variables and Some Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1307-1330, August.
    11. Shen, Xinmei & Zhang, Yi, 2013. "Ruin probabilities of a two-dimensional risk model with dependent risks of heavy tail," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1787-1799.
    12. Royi Jacobovic & Nikki Levering & Onno Boxma, 2023. "Externalities in the M/G/1 queue: LCFS-PR versus FCFS," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 239-267, August.
    13. Chen Yu & Zhang Weiping & Liu Jie, 2010. "Asymptotic Tail Probability of Randomly Weighted Sum of Dependent Heavy-Tailed Random Variables," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 4(2), pages 1-11, July.
    14. Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
    15. Xinmei Shen & Kailin Du, 2023. "Uniform Approximation for the Tail Behavior of Bidimensional Randomly Weighted Sums," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-25, March.
    16. Yang, Yang & Jiang, Tao & Wang, Kaiyong & Yuen, Kam C., 2020. "Interplay of financial and insurance risks in dependent discrete-time risk models," Statistics & Probability Letters, Elsevier, vol. 162(C).
    17. Chen, Yiqing, 2020. "A Kesten-type bound for sums of randomly weighted subexponential random variables," Statistics & Probability Letters, Elsevier, vol. 158(C).
    18. Liu, Yang & Chen, Zhenlong & Fu, Ke-Ang, 2021. "Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 177(C).
    19. Li, Jinzhu, 2018. "On the joint tail behavior of randomly weighted sums of heavy-tailed random variables," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 40-53.
    20. Eckert, Johanna & Gatzert, Nadine, 2018. "Risk- and value-based management for non-life insurers under solvency constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 761-774.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:1:p:149-:d:1312098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.