IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i3d10.1007_s11009-024-10103-z.html
   My bibliography  Save this article

Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims

Author

Listed:
  • Dawei Lu

    (Dalian University of Technology)

  • Ting Li

    (Dalian University of Technology)

  • Meng Yuan

    (Dongbei University of Finance and Economics)

  • Xinmei Shen

    (Dalian University of Technology)

Abstract

This paper considers a multidimensional risk model with cádlág investment return processes, in which there exists some dependence structure among claims and claim-arrival time. Specifically, if claims follow the subexponential distribution or the regular variation distribution, we obtain some precise asymptotic estimates for the finite-time ruin probabilities. In addition, some numerical simulations are presented to test the performance of the theoretical results.

Suggested Citation

  • Dawei Lu & Ting Li & Meng Yuan & Xinmei Shen, 2024. "Asymptotic Finite-Time Ruin Probabilities for a Multidimensional Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-28, September.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:3:d:10.1007_s11009-024-10103-z
    DOI: 10.1007/s11009-024-10103-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10103-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10103-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    2. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    3. Fengyang Cheng & Dongya Cheng, 2018. "Randomly weighted sums of dependent subexponential random variables with applications to risk theory," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(3), pages 191-202, March.
    4. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    2. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
    3. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    4. Guo, Fenglong, 2022. "Ruin probability of a continuous-time model with dependence between insurance and financial risks caused by systematic factors," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    5. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    6. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    7. Peng, Jiangyan & Huang, Jin, 2010. "Ruin probability in a one-sided linear model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 662-669, April.
    8. Bai, Xiaodong & Song, Lixin, 2011. "The asymptotic estimate for the sum of two correlated classes of discounted aggregate claims with heavy tails," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1891-1898.
    9. Zhangting Chen & Dongya Cheng, 2024. "On the Tail Behavior for Randomly Weighted Sums of Dependent Random Variables with its Applications to Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-27, December.
    10. Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
    11. Cheng, Ming & Konstantinides, Dimitrios G. & Wang, Dingcheng, 2022. "Uniform asymptotic estimates in a time-dependent risk model with general investment returns and multivariate regularly varying claims," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    13. Wei, Li, 2009. "Ruin probability in the presence of interest earnings and tax payments," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 133-138, August.
    14. Li, Jinzhu, 2022. "Asymptotic analysis of a dynamic systemic risk measure in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 38-56.
    15. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    16. Li, Jinzhu, 2017. "A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 49-55.
    17. Ming Cheng & Dingcheng Wang, 2023. "Uniform Asymptotic Estimate for the Ruin Probability in a Renewal Risk Model with Cox–Ingersoll–Ross Returns," Mathematics, MDPI, vol. 11(5), pages 1-10, March.
    18. Liu, Xijun & Gao, Qingwu & Wang, Yuebao, 2012. "A note on a dependent risk model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 707-712.
    19. Yang, Haizhong & Li, Jinzhu, 2014. "Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 185-192.
    20. Shijie Wang & Yueli Yang & Yang Liu & Lianqiang Yang, 2023. "Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:3:d:10.1007_s11009-024-10103-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.