IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp205-215.html
   My bibliography  Save this article

Survival probabilities in a discrete semi-Markov risk model

Author

Listed:
  • Chen, Mi
  • Yuen, Kam Chuen
  • Guo, Junyi

Abstract

In this paper, we consider the survival probability for a discrete semi-Markov risk model, which assumes individual claims are influenced by a Markov chain with finite state space and there is autocorrelation among consecutive claim sizes. Our semi-Markov risk model is similar to the one studied in Reinhard and Snoussi (2001,2002) [1,2] without the restriction imposed on the distributions of the claims. In particular, the model of study includes several existing risk models such as the compound binomial model (with time-correlated claims) and the compound Markov binomial model (with time-correlated claims) as special cases. The main purpose of the paper is to develop a recursive method for computing the survival probability in the two-state model, and present some numerical examples to illustrate the application of our results.

Suggested Citation

  • Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:205-215
    DOI: 10.1016/j.amc.2014.01.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314000940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Zhang, 2008. "On the Ruin Problem in a Markov-Modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 225-238, June.
    2. Albrecher, Hansjorg & Boxma, Onno J., 2005. "On the discounted penalty function in a Markov-dependent risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 650-672, December.
    3. Shiu, Elias S.W., 1989. "The Probability of Eventual Ruin in the Compound Binomial Model," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 179-190, November.
    4. Lu, Yi & Li, Shuanming, 2005. "On the probability of ruin in a Markov-modulated risk model," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 522-532, December.
    5. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2010. "An elementary approach to discrete models of dividend strategies," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 109-116, February.
    6. Xiao, Yuntao & Guo, Junyi, 2007. "The compound binomial risk model with time-correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 124-133, July.
    7. Janssen, Jacques & Reinhard, Jean-Marie, 1985. "Probabilités de Ruine pour une Classe de Modèles de Risque Semi-Markoviens," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 123-133, November.
    8. Eric Cheung & David Landriault, 2009. "Analysis of a Generalized Penalty Function in a Semi-Markovian Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 497-513.
    9. Willmot, Gordon E., 1993. "Ruin probabilities in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 133-142, April.
    10. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    11. J.M. Reinhard, & Snoussi, M., 2001. "On the Distribution of the Surplus Prior to Ruin in a Discrete Semi-Markov Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 31(2), pages 255-273, November.
    12. Yuen, K. C. & Guo, J. Y., 2001. "Ruin probabilities for time-correlated claims in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 47-57, August.
    13. Cheng, Shixue & Gerber, Hans U. & Shiu, Elias S. W., 2000. "Discounted probabilities and ruin theory in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 239-250, May.
    14. Lu, Yi & Li, Shuanming, 2009. "The Markovian regime-switching risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 296-303, April.
    15. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    16. Gerber, Hans U., 1988. "Mathematical Fun with the Compound Binomial Process," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 161-168, November.
    17. Cossette, Helene & Landriault, David & Marceau, Etienne, 2004. "Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 449-466, June.
    18. Ng, Andrew C.Y. & Yang, Hailiang, 2006. "On the joint distribution of surplus before and after ruin under a Markovian regime switching model," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 244-266, February.
    19. Zhu, Jinxia & Yang, Hailiang, 2008. "Ruin theory for a Markov regime-switching model under a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 311-318, February.
    20. Tan, Jiyang & Yang, Xiangqun, 2006. "The compound binomial model with randomized decisions on paying dividends," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 1-18, August.
    21. Zhu, Jinxia & Yang, Hailiang, 2009. "On differentiability of ruin functions under Markov-modulated models," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1673-1695, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Baltazar-Larios & Luz Judith R. Esparza, 2022. "Statistical Inference for Partially Observed Markov-Modulated Diffusion Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 571-593, June.
    2. Palmowski, Zbigniew & Ramsden, Lewis & Papaioannou, Apostolos D., 2024. "Gerber-Shiu theory for discrete risk processes in a regime switching environment," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    3. Zhou, Zhongbao & Xiao, Helu & Deng, Yingchun, 2015. "Markov-dependent risk model with multi-layer dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 273-286.
    4. Jingchao Li & Bihao Su & Zhenghong Wei & Ciyu Nie, 2022. "A Multinomial Approximation Approach for the Finite Time Survival Probability Under the Markov-modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2169-2194, September.
    5. Bihao Su & Chenglong Xu & Jingchao Li, 2022. "A Deep Neural Network Approach to Solving for Seal’s Type Partial Integro-Differential Equation," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kam Pui Wat & Kam Chuen Yuen & Wai Keung Li & Xueyuan Wu, 2018. "On the Compound Binomial Risk Model with Delayed Claims and Randomized Dividends," Risks, MDPI, vol. 6(1), pages 1-13, January.
    2. Marceau, Etienne, 2009. "On the discrete-time compound renewal risk model with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 245-259, April.
    3. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    4. Yang, Hu & Zhang, Zhimin & Lan, Chunmei, 2009. "Ruin problems in a discrete Markov risk model," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 21-28, January.
    5. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    6. David Landriault, 2008. "On a generalization of the expected discounted penalty function in a discrete‐time insurance risk model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 525-539, November.
    7. S. X. Liu & J. Y. Guo, 2006. "Discrete Risk Model Revisited," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 303-313, June.
    8. Wang, Guanqing & Wang, Guojing & Yang, Hailiang, 2016. "On a multi-dimensional risk model with regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 73-83.
    9. Bao, Zhenhua & Song, Lixin & Liu, He, 2013. "A note on the inflated-parameter binomial distribution," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1911-1914.
    10. Xin Zhang, 2008. "On the Ruin Problem in a Markov-Modulated Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 225-238, June.
    11. Liu, Guoxin & Zhao, Jinyan, 2007. "Joint distributions of some actuarial random vectors in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 95-103, January.
    12. Jae-Kyung Woo & Haibo Liu, 2018. "Discounted Aggregate Claim Costs Until Ruin in the Discrete-Time Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1285-1318, December.
    13. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    14. Zhou, Zhongbao & Xiao, Helu & Deng, Yingchun, 2015. "Markov-dependent risk model with multi-layer dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 273-286.
    15. Constantinescu Corina D. & Kozubowski Tomasz J. & Qian Haoyu H., 2019. "Probability of ruin in discrete insurance risk model with dependent Pareto claims," Dependence Modeling, De Gruyter, vol. 7(1), pages 215-233, January.
    16. XIAO, Lin, 2022. "Compound binomial risk model in a Markovian environment with capital cost and the calculation algorithm," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    17. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    18. Liu, Guoxin & Wang, Ying & Zhang, Bei, 2005. "Ruin probability in the continuous-time compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 303-316, June.
    19. Palmowski, Zbigniew & Ramsden, Lewis & Papaioannou, Apostolos D., 2024. "Gerber-Shiu theory for discrete risk processes in a regime switching environment," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    20. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:205-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.