IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2767-d1174443.html
   My bibliography  Save this article

Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions

Author

Listed:
  • Dan Zhu

    (School of Statistics and Data Science, Qufu Normal University, Qufu 273165, China)

  • Ming Zhou

    (Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872, China)

  • Chuancun Yin

    (School of Statistics and Data Science, Qufu Normal University, Qufu 273165, China)

Abstract

The present work concerns the finite-time ruin probabilities for several bidimensional risk models with constant interest force and correlated Brownian motions. Under the condition that the two Brownian motions { B 1 ( t ) , t ≥ 0 } and { B 2 ( t ) , t ≥ 0 } are correlated, we establish new results for the finite-time ruin probabilities. Our research enriches the development of the ruin theory with heavy tails in unidimensional risk models and the dependence theory of stochastic processes.

Suggested Citation

  • Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2767-:d:1174443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, July.
    2. Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
    3. Yin, Chuancun & Wen, Yuzhen, 2013. "An extension of Paulsen–Gjessing’s risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 469-476.
    4. Jinzhu Li, 2017. "The infinite-time ruin probability for a bidimensional renewal risk model with constant force of interest and dependent claims," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1959-1971, February.
    5. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    6. Jaap Geluk & Qihe Tang, 2009. "Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables," Journal of Theoretical Probability, Springer, vol. 22(4), pages 871-882, December.
    7. Ebrahimi, Nader, 2002. "On the Dependence Structure of Certain Multi-dimensional Ito Processes and Corresponding Hitting Times," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 128-137, April.
    8. Chan, Wai-Sum & Yang, Hailiang & Zhang, Lianzeng, 2003. "Some results on ruin probabilities in a two-dimensional risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 345-358, July.
    9. Qihe Tang, 2004. "The Ruin Probability of a Discrete Time Risk Model under Constant Interest Rate with Heavy Tails," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2004(3), pages 229-240.
    10. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    11. Li, Junhai & Liu, Zaiming & Tang, Qihe, 2007. "On the ruin probabilities of a bidimensional perturbed risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 185-195, July.
    12. Chuancun Yin & Yuzhen Wen, 2013. "An extension of Paulsen-Gjessing's risk model with stochastic return on investments," Papers 1302.6757, arXiv.org.
    13. Yang, Haizhong & Li, Jinzhu, 2014. "Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 185-192.
    14. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    2. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.
    3. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    4. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    5. Anita Behme & Philipp Lukas Strietzel, 2021. "A $$2~{\times }~2$$ 2 × 2 random switching model and its dual risk model," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 27-64, October.
    6. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    7. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    8. Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
    9. Yang, Haizhong & Sun, Suting, 2013. "Subexponentiality of the product of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2039-2044.
    10. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    11. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    12. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    13. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    14. Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
    15. Chen, Yu & Zhang, Weiping, 2007. "Large deviations for random sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 530-538, March.
    16. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
    17. Peng, Jiangyan & Huang, Jin, 2010. "Ruin probability in a one-sided linear model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 662-669, April.
    18. Wang, Yinfeng & Yin, Chuancun, 2010. "Approximation for the ruin probabilities in a discrete time risk model with dependent risks," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1335-1342, September.
    19. Shen, Xinmei & Zhang, Yi, 2013. "Ruin probabilities of a two-dimensional risk model with dependent risks of heavy tail," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1787-1799.
    20. Royi Jacobovic & Nikki Levering & Onno Boxma, 2023. "Externalities in the M/G/1 queue: LCFS-PR versus FCFS," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 239-267, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2767-:d:1174443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.