IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v149y2019icp153-159.html
   My bibliography  Save this article

On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims

Author

Listed:
  • Yang, Haizhong
  • Li, Jinzhu

Abstract

This paper considers a non-standard renewal risk model with constant force of interest, where each main claim may derive a delayed claim occurring after a random period of time. By means of recent asymptotic results for randomly weighted sums of subexponential random variables, we obtain some precise asymptotic expansions for the finite-time ruin probability when the main claims have a common subexponential tail.

Suggested Citation

  • Yang, Haizhong & Li, Jinzhu, 2019. "On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 153-159.
  • Handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:153-159
    DOI: 10.1016/j.spl.2019.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
    2. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    3. Yuen, K. C. & Guo, J. Y., 2001. "Ruin probabilities for time-correlated claims in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 47-57, August.
    4. Waters, Howard R. & Papatriandafylou, Alex, 1985. "Ruin probabilities allowing for delay in claims settlement," Insurance: Mathematics and Economics, Elsevier, vol. 4(2), pages 113-122, April.
    5. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    6. Xiao, Yuntao & Guo, Junyi, 2007. "The compound binomial risk model with time-correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 124-133, July.
    7. Hao, Xuemiao & Tang, Qihe, 2008. "A uniform asymptotic estimate for discounted aggregate claims with subexponential tails," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 116-120, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Chen, Zhenlong & Fu, Ke-Ang, 2021. "Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    3. Shijie Wang & Yueli Yang & Yang Liu & Lianqiang Yang, 2023. "Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    2. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
    3. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    4. Liu, Yang & Chen, Zhenlong & Fu, Ke-Ang, 2021. "Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 177(C).
    5. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    6. Yang Yang & Xinzhi Wang & Xiaonan Su & Aili Zhang, 2019. "Asymptotic Behavior of Ruin Probabilities in an Insurance Risk Model with Quasi-Asymptotically Independent or Bivariate Regularly Varying-Tailed Main Claim and By-Claim," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    7. Xie, Jie-hua & Zou, Wei, 2010. "Expected present value of total dividends in a delayed claims risk model under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 415-422, April.
    8. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    9. Jiyang Tan & Chun Li & Ziqiang Li & Xiangqun Yang & Bicheng Zhang, 2015. "Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 61-83, August.
    10. He Liu & Zhenhua Bao, 2015. "On a Discrete Interaction Risk Model with Delayed Claims," JRFM, MDPI, vol. 8(4), pages 1-14, September.
    11. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    12. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    13. Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
    14. Peng, Jiangyan & Huang, Jin, 2010. "Ruin probability in a one-sided linear model with constant interest rate," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 662-669, April.
    15. Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
    16. Mantas Dirma & Saulius Paukštys & Jonas Šiaulys, 2021. "Tails of the Moments for Sums with Dominatedly Varying Random Summands," Mathematics, MDPI, vol. 9(8), pages 1-26, April.
    17. Zhang, Chenhua, 2014. "Uniform asymptotics for the tail probability of weighted sums with heavy tails," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 221-229.
    18. Kam Pui Wat & Kam Chuen Yuen & Wai Keung Li & Xueyuan Wu, 2018. "On the Compound Binomial Risk Model with Delayed Claims and Randomized Dividends," Risks, MDPI, vol. 6(1), pages 1-13, January.
    19. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2017. "Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 227-235.
    20. Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:153-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.